Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 May;6(5):1031–1037. doi: 10.1002/pro.5560060509

The role of divalent cations in structure and function of murine adenosine deaminase.

B F Cooper 1, V Sideraki 1, D K Wilson 1, D Y Dominguez 1, S W Clark 1, F A Quiocho 1, F B Rudolph 1
PMCID: PMC2143705  PMID: 9144774

Abstract

For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in an acidic buffer. This represents the first production of the apoenzyme and demonstrates a rigorous method for removing the occult cofactor. Restoration to the holoenzyme is achieved with stoichiometric amounts of either Zn2+ or Co2+ yielding at least 95% of initial activity. Far UV CD and fluorescence spectra are the same for both the apo- and holoenzyme, providing evidence that removal of the cofactor does not alter secondary or tertiary structure. The substrate binding site remains functional as determined by similar quenching measured by tryptophan fluorescence of apo- or holoenzyme upon mixing with the transition state analog, deoxycoformycin. Excess levels of adenosine or N6- methyladenosine incubated with the apoenzyme prior to the addition of metal prevent restoration, suggesting that the cofactor adds through the substrate binding cleft. The cations Ca2+, Cd2+, Cr2+, Cu+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+, or Mg2+ did not restore adenosine deaminase activity to the apoenzyme. Mn2+, Cu2+, and Zn2+ were found to be competitive inhibitors of the holoenzyme with respect to substrate and Cd2+ and Co2+ were noncompetitive inhibitors. Weak inhibition (Ki > or = 1000 microM) was noted for Ca2+, Fe2+, and Fe3+.

Full Text

The Full Text of this article is available as a PDF (739.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Greenfield N. J., Fasman G. D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 1973;27:675–735. doi: 10.1016/s0076-6879(73)27030-1. [DOI] [PubMed] [Google Scholar]
  2. Agarwal R. P., Parks R. E., Jr Adenosine deaminase from human erythrocytes. Methods Enzymol. 1978;51:502–507. doi: 10.1016/s0076-6879(78)51069-0. [DOI] [PubMed] [Google Scholar]
  3. Auld D. S. Metal-free dialysis tubing. Methods Enzymol. 1988;158:13–14. doi: 10.1016/0076-6879(88)58043-6. [DOI] [PubMed] [Google Scholar]
  4. Bhaumik D., Medin J., Gathy K., Coleman M. S. Mutational analysis of active site residues of human adenosine deaminase. J Biol Chem. 1993 Mar 15;268(8):5464–5470. [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Chassy B. M., Suhadolnik R. J. Adenosine aminohydrolase. Binding and hydrolysis of 2-and 6-substituted purine ribonucleosides and 9-substituted adenine nucleosides. J Biol Chem. 1967 Aug 25;242(16):3655–3658. [PubMed] [Google Scholar]
  7. Frick L., Wolfenden R., Smal E., Baker D. C. Transition-state stabilization by adenosine deaminase: structural studies of its inhibitory complex with deoxycoformycin. Biochemistry. 1986 Apr 8;25(7):1616–1621. doi: 10.1021/bi00355a025. [DOI] [PubMed] [Google Scholar]
  8. Ingolia D. E., Yeung C. Y., Orengo I. F., Harrison M. L., Frayne E. G., Rudolph F. B., Kellems R. E. Purification and characterization of adenosine deaminase from a genetically enriched mouse cell line. J Biol Chem. 1985 Oct 25;260(24):13261–13267. [PubMed] [Google Scholar]
  9. Kurz L. C., Frieden C. Adenosine deaminase: solvent isotope and pH effects on the binding of transition-state and ground-state analogue inhibitors. Biochemistry. 1983 Jan 18;22(2):382–389. doi: 10.1021/bi00271a023. [DOI] [PubMed] [Google Scholar]
  10. Luo C. H., Chen J., Yang X. J., Li Y. Q., Xu B., Zheng D. Y., Qian Y. Q. [Influence of zinc deprivation on thymus, spleen development and adenosine deaminase activity in young rats]. Hua Xi Yi Ke Da Xue Xue Bao. 1989 Jun;20(2):199–202. [PubMed] [Google Scholar]
  11. Mohamedali K. A., Kurz L. C., Rudolph F. B. Site-directed mutagenesis of active site glutamate-217 in mouse adenosine deaminase. Biochemistry. 1996 Feb 6;35(5):1672–1680. doi: 10.1021/bi9514119. [DOI] [PubMed] [Google Scholar]
  12. Nygaard P. Adenosine deaminase from Escherichia coli. Methods Enzymol. 1978;51:508–512. doi: 10.1016/s0076-6879(78)51070-7. [DOI] [PubMed] [Google Scholar]
  13. Philips A. V., Coleman M. S., Maskos K., Barkley M. D. Time-resolved fluorescence spectroscopy of human adenosine deaminase: effects of enzyme inhibitors on protein conformation. Biochemistry. 1989 Mar 7;28(5):2040–2050. doi: 10.1021/bi00431a012. [DOI] [PubMed] [Google Scholar]
  14. Rokosu A. A. The characterization of an adenosine deaminase from chicken serum. Comp Biochem Physiol B. 1983;74(3):441–444. doi: 10.1016/0305-0491(83)90207-9. [DOI] [PubMed] [Google Scholar]
  15. Vallee B. L., Auld D. S. Active-site zinc ligands and activated H2O of zinc enzymes. Proc Natl Acad Sci U S A. 1990 Jan;87(1):220–224. doi: 10.1073/pnas.87.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wagner F. W. Preparation of metal-free enzymes. Methods Enzymol. 1988;158:21–32. doi: 10.1016/0076-6879(88)58045-x. [DOI] [PubMed] [Google Scholar]
  17. Wilson D. K., Quiocho F. A. A pre-transition-state mimic of an enzyme: X-ray structure of adenosine deaminase with bound 1-deazaadenosine and zinc-activated water. Biochemistry. 1993 Feb 23;32(7):1689–1694. doi: 10.1021/bi00058a001. [DOI] [PubMed] [Google Scholar]
  18. Wilson D. K., Rudolph F. B., Quiocho F. A. Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science. 1991 May 31;252(5010):1278–1284. doi: 10.1126/science.1925539. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES