Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jun;6(6):1347–1351. doi: 10.1002/pro.5560060625

Nuclear magnetic resonance assignment and secondary structure of an ankyrin-like repeat-bearing protein: myotrophin.

Y Yang 1, N S Rao 1, E Walker 1, S Sen 1, J Qin 1
PMCID: PMC2143708  PMID: 9194197

Abstract

Multidimensional heteronuclear NMR has been applied to the structural analysis of myotrophin, a novel protein identified from spontaneously hypertensive rat hearts and hypertrophic human hearts. Myotrophin has been shown to stimulate protein synthesis in myocytes and likely plays an important role in the initiation of cardiac hypertrophy, a major cause of mortality in humans. Recent cDNA cloning revealed that myotrophin has 11B amino acids containing 2.5 contiguous ANK repeats, a motif known to be involved in a wide range of macromolecular recognition. A series of two- and three-dimensional heteronuclear bond correlation NMR experiments have been performed on uniformly 15N-labeled or uniformly 15N/13C-labeled protein to obtain the 1H, 15N, and 13C chemical shift assignments. The secondary structure of myotrophin has been determined by a combination of NOEs, NH exchange data, 3JHN alpha coupling constants, and chemical shifts of 1H alpha, 13C alpha, and 13 C beta. The protein has been found to consist of seven helices, all connected by turns or loops. Six of the seven helices (all but the C-terminal helix) form three separate helix-turn-helix motifs. The two full ANK repeats in myotrophin are characteristic of multiple turns followed by a helix-turn-helix motif. A hairpin-like turn involving L32-R36 in ANK repeat #1 exhibits slow conformational averaging on the NMR time scale and appears dynamically different from the corresponding region (D65-169) of ANK repeat #2.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  2. Gay N. J., Ntwasa M. The Drosophila ankyrin repeat protein cactus has a predominantly alpha-helical secondary structure. FEBS Lett. 1993 Dec 6;335(2):155–160. doi: 10.1016/0014-5793(93)80720-f. [DOI] [PubMed] [Google Scholar]
  3. Gorina S., Pavletich N. P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science. 1996 Nov 8;274(5289):1001–1005. doi: 10.1126/science.274.5289.1001. [DOI] [PubMed] [Google Scholar]
  4. Hassel B. A., Zhou A., Sotomayor C., Maran A., Silverman R. H. A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J. 1993 Aug;12(8):3297–3304. doi: 10.1002/j.1460-2075.1993.tb05999.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jaffray E., Wood K. M., Hay R. T. Domain organization of I kappa B alpha and sites of interaction with NF-kappa B p65. Mol Cell Biol. 1995 Apr;15(4):2166–2172. doi: 10.1128/mcb.15.4.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Logan T. M., Olejniczak E. T., Xu R. X., Fesik S. W. Side chain and backbone assignments in isotopically labeled proteins from two heteronuclear triple resonance experiments. FEBS Lett. 1992 Dec 21;314(3):413–418. doi: 10.1016/0014-5793(92)81517-p. [DOI] [PubMed] [Google Scholar]
  7. Michaely P., Bennett V. The ANK repeat: a ubiquitous motif involved in macromolecular recognition. Trends Cell Biol. 1992 May;2(5):127–129. doi: 10.1016/0962-8924(92)90084-z. [DOI] [PubMed] [Google Scholar]
  8. Michaely P., Bennett V. The membrane-binding domain of ankyrin contains four independently folded subdomains, each comprised of six ankyrin repeats. J Biol Chem. 1993 Oct 25;268(30):22703–22709. [PubMed] [Google Scholar]
  9. Mukherjee D. P., McTiernan C. F., Sen S. Myotrophin induces early response genes and enhances cardiac gene expression. Hypertension. 1993 Feb;21(2):142–148. doi: 10.1161/01.hyp.21.2.142. [DOI] [PubMed] [Google Scholar]
  10. Schneider K. R., Smith R. L., O'Shea E. K. Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science. 1994 Oct 7;266(5182):122–126. doi: 10.1126/science.7939631. [DOI] [PubMed] [Google Scholar]
  11. Sen S., Kundu G., Mekhail N., Castel J., Misono K., Healy B. Myotrophin: purification of a novel peptide from spontaneously hypertensive rat heart that influences myocardial growth. J Biol Chem. 1990 Sep 25;265(27):16635–16643. [PubMed] [Google Scholar]
  12. Sil P., Mukherjee D., Sen S. Quantification of myotrophin from spontaneously hypertensive and normal rat hearts. Circ Res. 1995 Jun;76(6):1020–1027. doi: 10.1161/01.res.76.6.1020. [DOI] [PubMed] [Google Scholar]
  13. Sun S., Elwood J., Greene W. C. Both amino- and carboxyl-terminal sequences within I kappa B alpha regulate its inducible degradation. Mol Cell Biol. 1996 Mar;16(3):1058–1065. doi: 10.1128/mcb.16.3.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Taoka M., Isobe T., Okuyama T., Watanabe M., Kondo H., Yamakawa Y., Ozawa F., Hishinuma F., Kubota M., Minegishi A. Murine cerebellar neurons express a novel gene encoding a protein related to cell cycle control and cell fate determination proteins. J Biol Chem. 1994 Apr 1;269(13):9946–9951. [PubMed] [Google Scholar]
  15. Tevelev A., Byeon I. J., Selby T., Ericson K., Kim H. J., Kraynov V., Tsai M. D. Tumor suppressor p16INK4A: structural characterization of wild-type and mutant proteins by NMR and circular dichroism. Biochemistry. 1996 Jul 23;35(29):9475–9487. doi: 10.1021/bi960211+. [DOI] [PubMed] [Google Scholar]
  16. Thompson C. C., Brown T. A., McKnight S. L. Convergence of Ets- and notch-related structural motifs in a heteromeric DNA binding complex. Science. 1991 Aug 16;253(5021):762–768. doi: 10.1126/science.1876833. [DOI] [PubMed] [Google Scholar]
  17. Vuister G. W., Kim S. J., Wu C., Bax A. NMR evidence for similarities between the DNA-binding regions of Drosophila melanogaster heat shock factor and the helix-turn-helix and HNF-3/forkhead families of transcription factors. Biochemistry. 1994 Jan 11;33(1):10–16. doi: 10.1021/bi00167a002. [DOI] [PubMed] [Google Scholar]
  18. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES