Abstract
The three-dimensional structures of the magnesium- and manganese-bound forms of calbindin D9k were determined to 1.6 A and 1.9 A resolution, respectively, using X-ray crystallography. These two structures are nearly identical but deviate significantly from both the calcium bound form and the metal ion-free (apo) form. The largest structural differences are seen in the C-terminal EF-hand, and involve changes in both metal ion coordination and helix packing. The N-terminal calcium binding site is not occupied by any metal ion in the magnesium and manganese structures, and shows little structural deviation from the apo and calcium bound forms. 1H-NMR and UV spectroscopic studies at physiological ion concentrations show that the C-terminal site of the protein is significantly populated by magnesium at resting cell calcium levels, and that there is a negative allosteric interaction between magnesium and calcium binding. Calcium binding was found to occur with positive cooperativity at physiological magnesium concentration.
Full Text
The Full Text of this article is available as a PDF (8.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akke M., Forsén S., Chazin W. J. Molecular basis for co-operativity in Ca2+ binding to calbindin D9k. 1H nuclear magnetic resonance studies of (Cd2+)1-bovine calbindin D9k. J Mol Biol. 1991 Jul 5;220(1):173–189. doi: 10.1016/0022-2836(91)90389-n. [DOI] [PubMed] [Google Scholar]
- Akke M., Forsén S., Chazin W. J. Solution structure of (Cd2+)1-calbindin D9k reveals details of the stepwise structural changes along the Apo-->(Ca2+)II1-->(Ca2+)I,II2 binding pathway. J Mol Biol. 1995 Sep 8;252(1):102–121. doi: 10.1006/jmbi.1995.0478. [DOI] [PubMed] [Google Scholar]
- Chazin W. J., Rance M., Wright P. E. Complete assignment of the 1H nuclear magnetic resonance spectrum of French bean plastocyanin. Application of an integrated approach to spin system identification in proteins. J Mol Biol. 1988 Aug 5;202(3):603–622. doi: 10.1016/0022-2836(88)90290-2. [DOI] [PubMed] [Google Scholar]
- Chazin W. J., Wright P. E. Complete assignment of the 1H nuclear magnetic resonance spectrum of French bean plastocyanin. Sequential resonance assignments, secondary structure and global fold. J Mol Biol. 1988 Aug 5;202(3):623–636. doi: 10.1016/0022-2836(88)90291-4. [DOI] [PubMed] [Google Scholar]
- Declercq J. P., Tinant B., Parello J., Rambaud J. Ionic interactions with parvalbumins. Crystal structure determination of pike 4.10 parvalbumin in four different ionic environments. J Mol Biol. 1991 Aug 20;220(4):1017–1039. doi: 10.1016/0022-2836(91)90369-h. [DOI] [PubMed] [Google Scholar]
- Eberhard M., Erne P. Calcium and magnesium binding to rat parvalbumin. Eur J Biochem. 1994 May 15;222(1):21–26. doi: 10.1111/j.1432-1033.1994.tb18836.x. [DOI] [PubMed] [Google Scholar]
- Falke J. J., Drake S. K., Hazard A. L., Peersen O. B. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys. 1994 Aug;27(3):219–290. doi: 10.1017/s0033583500003012. [DOI] [PubMed] [Google Scholar]
- Hofmann T., Eng S., Lilja H., Drakenberg T., Vogel H. J., Forsén S. Site-site interactions in EF-hand calcium-binding proteins. Laser-excited europium luminescence studies of 9-kDa calbindin, the pig intestinal calcium-binding protein. Eur J Biochem. 1988 Mar 1;172(2):307–313. doi: 10.1111/j.1432-1033.1988.tb13888.x. [DOI] [PubMed] [Google Scholar]
- Houdusse A., Cohen C. Structure of the regulatory domain of scallop myosin at 2 A resolution: implications for regulation. Structure. 1996 Jan 15;4(1):21–32. doi: 10.1016/s0969-2126(96)00006-8. [DOI] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Kilby P. M., Van Eldik L. J., Roberts G. C. The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure. 1996 Sep 15;4(9):1041–1052. doi: 10.1016/s0969-2126(96)00111-6. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
- Kördel J., Forsén S., Drakenberg T., Chazin W. J. The rate and structural consequences of proline cis-trans isomerization in calbindin D9k: NMR studies of the minor (cis-Pro43) isoform and the Pro43Gly mutant. Biochemistry. 1990 May 8;29(18):4400–4409. doi: 10.1021/bi00470a020. [DOI] [PubMed] [Google Scholar]
- Kördel J., Skelton N. J., Akke M., Chazin W. J. High-resolution structure of calcium-loaded calbindin D9k. J Mol Biol. 1993 Jun 5;231(3):711–734. doi: 10.1006/jmbi.1993.1322. [DOI] [PubMed] [Google Scholar]
- Linse S., Johansson C., Brodin P., Grundström T., Drakenberg T., Forsén S. Electrostatic contributions to the binding of Ca2+ in calbindin D9k. Biochemistry. 1991 Jan 8;30(1):154–162. doi: 10.1021/bi00215a023. [DOI] [PubMed] [Google Scholar]
- Nakayama S., Moncrief N. D., Kretsinger R. H. Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. J Mol Evol. 1992 May;34(5):416–448. doi: 10.1007/BF00162998. [DOI] [PubMed] [Google Scholar]
- Persson E., Selander M., Linse S., Drakenberg T., Ohlin A. K., Stenflo J. Calcium binding to the isolated beta-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. J Biol Chem. 1989 Oct 5;264(28):16897–16904. [PubMed] [Google Scholar]
- Potts B. C., Smith J., Akke M., Macke T. J., Okazaki K., Hidaka H., Case D. A., Chazin W. J. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca(2+)-binding proteins. Nat Struct Biol. 1995 Sep;2(9):790–796. doi: 10.1038/nsb0995-790. [DOI] [PubMed] [Google Scholar]
- Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
- Svensson L. A., Thulin E., Forsén S. Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. J Mol Biol. 1992 Feb 5;223(3):601–606. doi: 10.1016/0022-2836(92)90976-q. [DOI] [PubMed] [Google Scholar]
- Szebenyi D. M., Moffat K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J Biol Chem. 1986 Jul 5;261(19):8761–8777. [PubMed] [Google Scholar]
- Vogel H. J., Drakenberg T., Forsén S., O'Neil J. D., Hofmann T. Structural differences in the two calcium binding sites of the porcine intestinal calcium binding protein: a multinuclear NMR study. Biochemistry. 1985 Jul 16;24(15):3870–3876. doi: 10.1021/bi00336a009. [DOI] [PubMed] [Google Scholar]
- Walters J. R., Howard A., Charpin M. V., Gniecko K. C., Brodin P., Thulin E., Forsén S. Stimulation of intestinal basolateral membrane calcium-pump activity by recombinant synthetic calbindin-D9k and specific mutants. Biochem Biophys Res Commun. 1990 Jul 31;170(2):603–608. doi: 10.1016/0006-291x(90)92134-l. [DOI] [PubMed] [Google Scholar]
- Wimberly B., Thulin E., Chazin W. J. Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant. Protein Sci. 1995 Jun;4(6):1045–1055. doi: 10.1002/pro.5560040603. [DOI] [PMC free article] [PubMed] [Google Scholar]