Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jun;6(6):1190–1196. doi: 10.1002/pro.5560060607

Optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins.

V Z Spassov 1, R Ladenstein 1, A D Karshikoff 1
PMCID: PMC2143717  PMID: 9194179

Abstract

The three-dimensional optimization of the electrostatic interactions between the charged amino acid residues and the peptide partial charges was studied by Monte-Carlo simulations on a set of 127 nonhomologous protein structures with known atomic coordinates. It was shown that this type of interaction is very well optimized for all proteins in the data set, which suggests that they are a valuable driving force, at least for the native side-chain conformations. Similar to the optimization of the charge-charge interactions (Spassov VZ, Karshikoff AD, Ladenstein R, 1995, Protein Sci 4:1516-1527), the optimization effect was found more pronounced for enzymes than for proteins without enzymatic function. The asymmetry in the interactions of acidic and basic groups with the peptide dipoles was analyzed and a hypothesis was proposed that the properties of peptide dipoles are a factor contributing to the natural selection of the basic amino acids in the chemical composition of proteins.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqvist J., Luecke H., Quiocho F. A., Warshel A. Dipoles localized at helix termini of proteins stabilize charges. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):2026–2030. doi: 10.1073/pnas.88.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bashford D., Karplus M. pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry. 1990 Nov 6;29(44):10219–10225. doi: 10.1021/bi00496a010. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Boberg J., Salakoski T., Vihinen M. Representative selection of proteins based on nuclear families. Protein Eng. 1995 May;8(5):501–503. doi: 10.1093/protein/8.5.501. [DOI] [PubMed] [Google Scholar]
  5. Gandini D., Gogioso L., Bolognesi M., Bordo D. Patterns in ionizable side chain interactions in protein structures. Proteins. 1996 Apr;24(4):439–449. doi: 10.1002/(SICI)1097-0134(199604)24:4<439::AID-PROT4>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  6. Gilson M. K., Honig B. Destabilization of an alpha-helix-bundle protein by helix dipoles. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1524–1528. doi: 10.1073/pnas.86.5.1524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hol W. G., Halie L. M., Sander C. Dipoles of the alpha-helix and beta-sheet: their role in protein folding. Nature. 1981 Dec 10;294(5841):532–536. doi: 10.1038/294532a0. [DOI] [PubMed] [Google Scholar]
  8. Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
  9. Hwang J. K., Warshel A. Why ion pair reversal by protein engineering is unlikely to succeed. Nature. 1988 Jul 21;334(6179):270–272. doi: 10.1038/334270a0. [DOI] [PubMed] [Google Scholar]
  10. Karshikoff A. A simple algorithm for the calculation of multiple site titration curves. Protein Eng. 1995 Mar;8(3):243–248. doi: 10.1093/protein/8.3.243. [DOI] [PubMed] [Google Scholar]
  11. Karshikoff A., Reinemer P., Huber R., Ladenstein R. Electrostatic evidence for the activation of the glutathione thiol by Tyr7 in pi-class glutathione transferases. Eur J Biochem. 1993 Aug 1;215(3):663–670. doi: 10.1111/j.1432-1033.1993.tb18077.x. [DOI] [PubMed] [Google Scholar]
  12. Miller S., Janin J., Lesk A. M., Chothia C. Interior and surface of monomeric proteins. J Mol Biol. 1987 Aug 5;196(3):641–656. doi: 10.1016/0022-2836(87)90038-6. [DOI] [PubMed] [Google Scholar]
  13. Muegge I., Schweins T., Langen R., Warshel A. Electrostatic control of GTP and GDP binding in the oncoprotein p21ras. Structure. 1996 Apr 15;4(4):475–489. doi: 10.1016/s0969-2126(96)00052-4. [DOI] [PubMed] [Google Scholar]
  14. Oberoi H., Trikha J., Yuan X., Allewell N. M. Identification and analysis of long-range electrostatic effects in proteins by computer modeling:aspartate transcarbamylase. Proteins. 1996 Jul;25(3):300–314. doi: 10.1002/(SICI)1097-0134(199607)25:3<300::AID-PROT3>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  15. Plesniak L. A., Connelly G. P., Wakarchuk W. W., McIntosh L. P. Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange. Protein Sci. 1996 Nov;5(11):2319–2328. doi: 10.1002/pro.5560051118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rogers N. K., Sternberg M. J. Electrostatic interactions in globular proteins. Different dielectric models applied to the packing of alpha-helices. J Mol Biol. 1984 Apr 15;174(3):527–542. doi: 10.1016/0022-2836(84)90334-6. [DOI] [PubMed] [Google Scholar]
  17. Spassov V. Z., Atanasov B. P. Spatial optimization of electrostatic interactions between the ionized groups in globular proteins. Proteins. 1994 Jul;19(3):222–229. doi: 10.1002/prot.340190306. [DOI] [PubMed] [Google Scholar]
  18. Spassov V. Z., Karshikoff A. D., Ladenstein R. Optimization of the electrostatic interactions in proteins of different functional and folding type. Protein Sci. 1994 Sep;3(9):1556–1569. doi: 10.1002/pro.5560030921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spassov V. Z., Karshikoff A. D., Ladenstein R. The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions. Protein Sci. 1995 Aug;4(8):1516–1527. doi: 10.1002/pro.5560040809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takahashi T., Nakamura H., Wada A. Electrostatic forces in two lysozymes: calculations and measurements of histidine pKa values. Biopolymers. 1992 Aug;32(8):897–909. doi: 10.1002/bip.360320802. [DOI] [PubMed] [Google Scholar]
  21. Warshel A., Russell S. T., Churg A. K. Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4785–4789. doi: 10.1073/pnas.81.15.4785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Warwicker J., Watson H. C. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol. 1982 Jun 5;157(4):671–679. doi: 10.1016/0022-2836(82)90505-8. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES