Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jun;6(6):1316–1324. doi: 10.1002/pro.5560060620

Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR.

E W Chung 1, E J Nettleton 1, C J Morgan 1, M Gross 1, A Miranker 1, S E Radford 1, C M Dobson 1, C V Robinson 1
PMCID: PMC2143718  PMID: 9194192

Abstract

The extent of deuterium labeling of hen lysozyme, its three-disulfide derivative, and the homologous alpha-lactalbumins, has been measured by both mass spectrometry and NMR. Different conformational states of the proteins were produced by varying the solution conditions. Alternate protein conformers were found to contain different numbers of 2H atoms. Furthermore, measurement in the gas phase of the mass spectrometer or directly in solution by NMR gave consistent results. The unique ability of mass spectrometry to distinguish distributions of 2H atoms in protein molecules is exemplified using samples prepared to contain different populations of 2H-labeled protein. A comparison of the peak widths of bovine alpha-lactalbumin in alternate solution conformations but containing the same average number of 2H atoms showed dramatic differences due to different 2H distributions in the two protein conformers. Measurement of 2H distributions by ESI-MS enabled characterization of conformational averaging and structural heterogeneity. In addition, a time course for hydrogen exchange was examined and the variation in distributions of 2H atom compared with simulations for different hydrogen exchange models. The results clearly show that exchange from the native state of bovine alpha-lactalbumin at 15 degrees C is dominated by local unfolding events.

Full Text

The Full Text of this article is available as a PDF (905.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aramini J. M., Drakenberg T., Hiraoki T., Ke Y., Nitta K., Vogel H. J. Calcium-43 NMR studies of calcium-binding lysozymes and alpha-lactalbumins. Biochemistry. 1992 Jul 28;31(29):6761–6768. doi: 10.1021/bi00144a016. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Englander J. J., Mayne L., Milne J. S., Englander S. W. Thermodynamic parameters from hydrogen exchange measurements. Methods Enzymol. 1995;259:344–356. doi: 10.1016/0076-6879(95)59051-x. [DOI] [PubMed] [Google Scholar]
  3. Connelly G. P., Bai Y., Jeng M. F., Englander S. W. Isotope effects in peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):87–92. doi: 10.1002/prot.340170111. [DOI] [PubMed] [Google Scholar]
  4. Eyles S. J., Radford S. E., Robinson C. V., Dobson C. M. Kinetic consequences of the removal of a disulfide bridge on the folding of hen lysozyme. Biochemistry. 1994 Nov 8;33(44):13038–13048. doi: 10.1021/bi00248a013. [DOI] [PubMed] [Google Scholar]
  5. Gross M., Robinson C. V., Mayhew M., Hartl F. U., Radford S. E. Significant hydrogen exchange protection in GroEL-bound DHFR is maintained during iterative rounds of substrate cycling. Protein Sci. 1996 Dec;5(12):2506–2513. doi: 10.1002/pro.5560051213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  7. Itzhaki L. S., Evans P. A. Solvent isotope effects on the refolding kinetics of hen egg-white lysozyme. Protein Sci. 1996 Jan;5(1):140–146. doi: 10.1002/pro.5560050117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jaquinod M., Guy P., Halgand F., Caffrey M., Fitch J., Cusanovich M., Forest E. Stability study of Rhodobacter capsulatus ferrocytochrome c2 wild-type and site-directed mutants using hydrogen/deuterium exchange monitored by electrospray ionization mass spectrometry. FEBS Lett. 1996 Feb 12;380(1-2):44–48. doi: 10.1016/0014-5793(96)00004-x. [DOI] [PubMed] [Google Scholar]
  9. Johnson R. S., Walsh K. A. Mass spectrometric measurement of protein amide hydrogen exchange rates of apo- and holo-myoglobin. Protein Sci. 1994 Dec;3(12):2411–2418. doi: 10.1002/pro.5560031224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katta V., Chait B. T. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom. 1991 Apr;5(4):214–217. doi: 10.1002/rcm.1290050415. [DOI] [PubMed] [Google Scholar]
  11. Kragelund B. B., Robinson C. V., Knudsen J., Dobson C. M., Poulsen F. M. Folding of a four-helix bundle: studies of acyl-coenzyme A binding protein. Biochemistry. 1995 May 30;34(21):7217–7224. doi: 10.1021/bi00021a037. [DOI] [PubMed] [Google Scholar]
  12. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  13. Miranker A., Robinson C. V., Radford S. E., Aplin R. T., Dobson C. M. Detection of transient protein folding populations by mass spectrometry. Science. 1993 Nov 5;262(5135):896–900. doi: 10.1126/science.8235611. [DOI] [PubMed] [Google Scholar]
  14. Miranker A., Robinson C. V., Radford S. E., Dobson C. M. Investigation of protein folding by mass spectrometry. FASEB J. 1996 Jan;10(1):93–101. doi: 10.1096/fasebj.10.1.8566553. [DOI] [PubMed] [Google Scholar]
  15. Pedersen T. G., Sigurskjold B. W., Andersen K. V., Kjaer M., Poulsen F. M., Dobson C. M., Redfield C. A nuclear magnetic resonance study of the hydrogen-exchange behaviour of lysozyme in crystals and solution. J Mol Biol. 1991 Mar 20;218(2):413–426. doi: 10.1016/0022-2836(91)90722-i. [DOI] [PubMed] [Google Scholar]
  16. Radford S. E., Buck M., Topping K. D., Dobson C. M., Evans P. A. Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins. 1992 Oct;14(2):237–248. doi: 10.1002/prot.340140210. [DOI] [PubMed] [Google Scholar]
  17. Radford S. E., Woolfson D. N., Martin S. R., Lowe G., Dobson C. M. A three-disulphide derivative of hen lysozyme. Structure, dynamics and stability. Biochem J. 1991 Jan 1;273(Pt 1):211–217. doi: 10.1042/bj2730211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robinson C. V., Radford S. E. Weighing the evidence for structure: electrospray ionization mass spectrometry of proteins. Structure. 1995 Sep 15;3(9):861–865. doi: 10.1016/S0969-2126(01)00221-0. [DOI] [PubMed] [Google Scholar]
  19. Wagner D. S., Melton L. G., Yan Y., Erickson B. W., Anderegg R. J. Deuterium exchange of alpha-helices and beta-sheets as monitored by electrospray ionization mass spectrometry. Protein Sci. 1994 Aug;3(8):1305–1314. doi: 10.1002/pro.5560030817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wedin R. E., Delepierre M., Dobson C. M., Poulsen F. M. Mechanisms of hydrogen exchange in proteins from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme. Biochemistry. 1982 Mar 2;21(5):1098–1103. doi: 10.1021/bi00534a042. [DOI] [PubMed] [Google Scholar]
  21. Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]
  22. Yi Q., Baker D. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR. Protein Sci. 1996 Jun;5(6):1060–1066. doi: 10.1002/pro.5560050608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Zhang Z., Post C. B., Smith D. L. Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry. 1996 Jan 23;35(3):779–791. doi: 10.1021/bi952227q. [DOI] [PubMed] [Google Scholar]
  24. Zhang Z., Smith D. L. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 1993 Apr;2(4):522–531. doi: 10.1002/pro.5560020404. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES