Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jun;6(6):1302–1307. doi: 10.1002/pro.5560060618

Hydrophobicity regained.

P A Karplus 1
PMCID: PMC2143722  PMID: 9194190

Abstract

A widespread practice is to use free energies of transfer between organic solvents and water (delta G0transfer to define hydrophobicity scales for the amino acid side chains. A comparison of four delta G0transfer scales reveals that the values for hydrogen-bonding side chains are highly dependent on the non-aqueous environment. This property of polar side chains violates the assumptions underlying the paradigm of equating delta G0transfer with hydrophobicity or even with a generic solvation energy that is directly relevant to protein stability and ligand binding energetics. This simple regaining of the original concept of hydrophobicity reveals a flaw in approaches that use delta G0transfer values to derive generic estimates of the energetics of the burial of polar groups, and allows the introduction of a "pure" hydrophobicity scale for the amino acid residues.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974 Mar 22;248(446):338–339. doi: 10.1038/248338a0. [DOI] [PubMed] [Google Scholar]
  2. Cummings M. D., Hart T. N., Read R. J. Atomic solvation parameters in the analysis of protein-protein docking results. Protein Sci. 1995 Oct;4(10):2087–2099. doi: 10.1002/pro.5560041014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Damodaran S., Song K. B. The role of solvent polarity in the free energy of transfer of amino acid side chains from water to organic solvents. J Biol Chem. 1986 Jun 5;261(16):7220–7222. [PubMed] [Google Scholar]
  4. Dill K. A. Additivity principles in biochemistry. J Biol Chem. 1997 Jan 10;272(2):701–704. doi: 10.1074/jbc.272.2.701. [DOI] [PubMed] [Google Scholar]
  5. Dill K. A. The meaning of hydrophobicity. Science. 1990 Oct 12;250(4978):297–298. doi: 10.1126/science.2218535. [DOI] [PubMed] [Google Scholar]
  6. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  7. Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
  8. Honig B., Yang A. S. Free energy balance in protein folding. Adv Protein Chem. 1995;46:27–58. doi: 10.1016/s0065-3233(08)60331-9. [DOI] [PubMed] [Google Scholar]
  9. Horton N., Lewis M. Calculation of the free energy of association for protein complexes. Protein Sci. 1992 Jan;1(1):169–181. doi: 10.1002/pro.5560010117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Juffer A. H., Eisenhaber F., Hubbard S. J., Walther D., Argos P. Comparison of atomic solvation parametric sets: applicability and limitations in protein folding and binding. Protein Sci. 1995 Dec;4(12):2499–2509. doi: 10.1002/pro.5560041206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  12. Liu Y., Bolen D. W. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry. 1995 Oct 3;34(39):12884–12891. doi: 10.1021/bi00039a051. [DOI] [PubMed] [Google Scholar]
  13. Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
  14. Rose G. D., Wolfenden R. Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu Rev Biophys Biomol Struct. 1993;22:381–415. doi: 10.1146/annurev.bb.22.060193.002121. [DOI] [PubMed] [Google Scholar]
  15. Roseman M. A. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J Mol Biol. 1988 Apr 5;200(3):513–522. doi: 10.1016/0022-2836(88)90540-2. [DOI] [PubMed] [Google Scholar]
  16. Sharp K. A., Nicholls A., Fine R. F., Honig B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science. 1991 Apr 5;252(5002):106–109. doi: 10.1126/science.2011744. [DOI] [PubMed] [Google Scholar]
  17. Sharp K. A., Nicholls A., Friedman R., Honig B. Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. Biochemistry. 1991 Oct 8;30(40):9686–9697. doi: 10.1021/bi00104a017. [DOI] [PubMed] [Google Scholar]
  18. Vajda S., Weng Z., DeLisi C. Extracting hydrophobicity parameters from solute partition and protein mutation/unfolding experiments. Protein Eng. 1995 Nov;8(11):1081–1092. doi: 10.1093/protein/8.11.1081. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES