Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jun;6(6):1333–1337. doi: 10.1002/pro.5560060622

Automated design of the surface positions of protein helices.

B I Dahiyat 1, D B Gordon 1, S L Mayo 1
PMCID: PMC2143725  PMID: 9194194

Abstract

Using a protein design algorithm that quantitatively considers side-chain interactions, the design of surface residues of alpha helices was examined. Three scoring functions were tested: a hydrogen-bond potential, a hydrogen-bond potential in conjunction with a penalty for uncompensated burial of polar hydrogens, and a hydrogen-bond potential in combination with helix propensity. The solvent exposed residues of a homodimeric coiled coil based on GCN4-p1 were designed by using the Dead-End Elimination Theorem to find the optimal amino acid sequence for each scoring function. The corresponding peptides were synthesized and characterized by circular dichroism spectroscopy and size exclusion chromatography. The designed peptides were dimeric and nearly 100% helical at 1 degree C, with melting temperatures from 69-72 degrees C, over 12 degrees C higher than GCN4-p1, whereas a random hydrophilic sequence at the surface positions produced a peptide that melted at 15 degrees C. Analysis of the designed sequences suggests that helix propensity is the key factor in sequence design for surface helical positions.

Full Text

The Full Text of this article is available as a PDF (543.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betz S. F., DeGrado W. F. Controlling topology and native-like behavior of de novo-designed peptides: design and characterization of antiparallel four-stranded coiled coils. Biochemistry. 1996 May 28;35(21):6955–6962. doi: 10.1021/bi960095a. [DOI] [PubMed] [Google Scholar]
  2. Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
  3. Bowie J. U., Reidhaar-Olson J. F., Lim W. A., Sauer R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science. 1990 Mar 16;247(4948):1306–1310. doi: 10.1126/science.2315699. [DOI] [PubMed] [Google Scholar]
  4. Chakrabartty A., Kortemme T., Baldwin R. L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May;3(5):843–852. doi: 10.1002/pro.5560030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahiyat B. I., Mayo S. L. Protein design automation. Protein Sci. 1996 May;5(5):895–903. doi: 10.1002/pro.5560050511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Desjarlais J. R., Handel T. M. De novo design of the hydrophobic cores of proteins. Protein Sci. 1995 Oct;4(10):2006–2018. doi: 10.1002/pro.5560041006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunbrack R. L., Jr, Karplus M. Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J Mol Biol. 1993 Mar 20;230(2):543–574. doi: 10.1006/jmbi.1993.1170. [DOI] [PubMed] [Google Scholar]
  8. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  9. Goldstein R. F. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J. 1994 May;66(5):1335–1340. doi: 10.1016/S0006-3495(94)80923-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  11. Hellinga H. W., Caradonna J. P., Richards F. M. Construction of new ligand binding sites in proteins of known structure. II. Grafting of a buried transition metal binding site into Escherichia coli thioredoxin. J Mol Biol. 1991 Dec 5;222(3):787–803. doi: 10.1016/0022-2836(91)90511-4. [DOI] [PubMed] [Google Scholar]
  12. Hurley J. H., Baase W. A., Matthews B. W. Design and structural analysis of alternative hydrophobic core packing arrangements in bacteriophage T4 lysozyme. J Mol Biol. 1992 Apr 20;224(4):1143–1159. doi: 10.1016/0022-2836(92)90475-y. [DOI] [PubMed] [Google Scholar]
  13. Huyghues-Despointes B. M., Klingler T. M., Baldwin R. L. Measuring the strength of side-chain hydrogen bonds in peptide helices: the Gln.Asp (i, i + 4) interaction. Biochemistry. 1995 Oct 17;34(41):13267–13271. doi: 10.1021/bi00041a001. [DOI] [PubMed] [Google Scholar]
  14. Klemba M., Gardner K. H., Marino S., Clarke N. D., Regan L. Novel metal-binding proteins by design. Nat Struct Biol. 1995 May;2(5):368–373. doi: 10.1038/nsb0595-368. [DOI] [PubMed] [Google Scholar]
  15. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  16. O'Shea E. K., Lumb K. J., Kim P. S. Peptide 'Velcro': design of a heterodimeric coiled coil. Curr Biol. 1993 Oct 1;3(10):658–667. doi: 10.1016/0960-9822(93)90063-t. [DOI] [PubMed] [Google Scholar]
  17. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  18. Smith C. K., Withka J. M., Regan L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry. 1994 May 10;33(18):5510–5517. doi: 10.1021/bi00184a020. [DOI] [PubMed] [Google Scholar]
  19. Villegas V., Viguera A. R., Avilés F. X., Serrano L. Stabilization of proteins by rational design of alpha-helix stability using helix/coil transition theory. Fold Des. 1996;1(1):29–34. [PubMed] [Google Scholar]
  20. Zhang X. J., Baase W. A., Matthews B. W. Toward a simplification of the protein folding problem: a stabilizing polyalanine alpha-helix engineered in T4 lysozyme. Biochemistry. 1991 Feb 26;30(8):2012–2017. doi: 10.1021/bi00222a001. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES