Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jun;6(6):1273–1283. doi: 10.1002/pro.5560060615

Design of a leucine zipper coiled coil stabilized 1.4 kcal mol-1 by phosphorylation of a serine in the e position.

L Szilák 1, J Moitra 1, C Vinson 1
PMCID: PMC2143729  PMID: 9194187

Abstract

Using a dimeric bZIP protein, we have designed a leucine zipper that becomes more stable after a serine in the e position is phosphorylated by protein kinase A (delta delta GP = -1.4 kcal mol-1 dimer-1 or -0.7 kcal mol-1 residue-1). Mutagenesis studies indicate that three arginines form a network of inter-helical (i,i' + 5; i, i' + 2) and intra-helical (i, i + 4) attractive interactions with the phosphorylated serine. When the arginines are replaced with lysines, the stabilizing effect of serine phosphorylation is reduced (delta delta GP = -0.5 kcal mol-1 dimer-1). The hydrophobic interface of the leucine zipper needs a glycine in the d position to obtain an increase in stability after phosphorylation. The phosphorylated protein binds DNA with a 15-fold higher affinity. Using a transient transfection assay, we document a PKA dependent four-fold activation of a reporter gene. Phosphorylation of a threonine in the same e position decreases the stability by delta delta GP = +1.2 kcal mol-1 dimer-1. We present circular dichroism (CD) thermal denaturations of 15 bZIP proteins before and after phosphorylation. These data provide insights into the structural determinants that result in stabilization of a coiled coil by phosphorylation.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baxevanis A. D., Vinson C. R. Interactions of coiled coils in transcription factors: where is the specificity? Curr Opin Genet Dev. 1993 Apr;3(2):278–285. doi: 10.1016/0959-437x(93)90035-n. [DOI] [PubMed] [Google Scholar]
  2. Ginty D. D., Glowacka D., DeFranco C., Wagner J. A. Nerve growth factor-induced neuronal differentiation after dominant repression of both type I and type II cAMP-dependent protein kinase activities. J Biol Chem. 1991 Aug 15;266(23):15325–15333. [PubMed] [Google Scholar]
  3. Glass D. B., Trewhella J., Mitchell R. D., Walsh D. A. Conformationally constrained analogs of protein kinase inhibitor (6-22)amide: effect of turn structures in the center of the peptide on inhibition of cAMP-dependent protein kinase. Protein Sci. 1995 Mar;4(3):405–415. doi: 10.1002/pro.5560040307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gonzalez L., Jr, Plecs J. J., Alber T. An engineered allosteric switch in leucine-zipper oligomerization. Nat Struct Biol. 1996 Jun;3(6):510–515. doi: 10.1038/nsb0696-510. [DOI] [PubMed] [Google Scholar]
  5. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  6. Horovitz A., Serrano L., Avron B., Bycroft M., Fersht A. R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol. 1990 Dec 20;216(4):1031–1044. doi: 10.1016/S0022-2836(99)80018-7. [DOI] [PubMed] [Google Scholar]
  7. Iyer S. V., Davis D. L., Seal S. N., Burch J. B. Chicken vitellogenin gene-binding protein, a leucine zipper transcription factor that binds to an important control element in the chicken vitellogenin II promoter, is related to rat DBP. Mol Cell Biol. 1991 Oct;11(10):4863–4875. doi: 10.1128/mcb.11.10.4863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kennelly P. J., Krebs E. G. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem. 1991 Aug 25;266(24):15555–15558. [PubMed] [Google Scholar]
  9. Krylov D., Mikhailenko I., Vinson C. A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J. 1994 Jun 15;13(12):2849–2861. doi: 10.1002/j.1460-2075.1994.tb06579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krylov D., Olive M., Vinson C. Extending dimerization interfaces: the bZIP basic region can form a coiled coil. EMBO J. 1995 Nov 1;14(21):5329–5337. doi: 10.1002/j.1460-2075.1995.tb00217.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lin A., Frost J., Deng T., Smeal T., al-Alawi N., Kikkawa U., Hunter T., Brenner D., Karin M. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell. 1992 Sep 4;70(5):777–789. doi: 10.1016/0092-8674(92)90311-y. [DOI] [PubMed] [Google Scholar]
  12. Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maurer R. A. Both isoforms of the cAMP-dependent protein kinase catalytic subunit can activate transcription of the prolactin gene. J Biol Chem. 1989 Apr 25;264(12):6870–6873. [PubMed] [Google Scholar]
  14. McLachlan A. D., Stewart M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol. 1975 Oct 25;98(2):293–304. doi: 10.1016/s0022-2836(75)80119-7. [DOI] [PubMed] [Google Scholar]
  15. Nicklin M. J., Casari G. A single site mutation in a truncated Fos protein allows it to interact with the TRE in vitro. Oncogene. 1991 Jan;6(1):173–179. [PubMed] [Google Scholar]
  16. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  17. O'Shea E. K., Rutkowski R., Kim P. S. Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell. 1992 Feb 21;68(4):699–708. doi: 10.1016/0092-8674(92)90145-3. [DOI] [PubMed] [Google Scholar]
  18. Ohguro H., Palczewski K. Separation of phospho- and non-phosphopeptides using reverse phase column chromatography. FEBS Lett. 1995 Jul 24;368(3):452–454. doi: 10.1016/0014-5793(95)00710-q. [DOI] [PubMed] [Google Scholar]
  19. Olive M., Williams S. C., Dezan C., Johnson P. F., Vinson C. Design of a C/EBP-specific, dominant-negative bZIP protein with both inhibitory and gain-of-function properties. J Biol Chem. 1996 Jan 26;271(4):2040–2047. doi: 10.1074/jbc.271.4.2040. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  22. Szilák L., Moitra J., Krylov D., Vinson C. Phosphorylation destabilizes alpha-helices. Nat Struct Biol. 1997 Feb;4(2):112–114. doi: 10.1038/nsb0297-112. [DOI] [PubMed] [Google Scholar]
  23. Vinson C. R., Hai T., Boyd S. M. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes Dev. 1993 Jun;7(6):1047–1058. doi: 10.1101/gad.7.6.1047. [DOI] [PubMed] [Google Scholar]
  24. Vinson C. R., Sigler P. B., McKnight S. L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science. 1989 Nov 17;246(4932):911–916. doi: 10.1126/science.2683088. [DOI] [PubMed] [Google Scholar]
  25. Williams S. C., Cantwell C. A., Johnson P. F. A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev. 1991 Sep;5(9):1553–1567. doi: 10.1101/gad.5.9.1553. [DOI] [PubMed] [Google Scholar]
  26. Zamyatnin A. A. Amino acid, peptide, and protein volume in solution. Annu Rev Biophys Bioeng. 1984;13:145–165. doi: 10.1146/annurev.bb.13.060184.001045. [DOI] [PubMed] [Google Scholar]
  27. Zhou N. E., Kay C. M., Hodges R. S. The net energetic contribution of interhelical electrostatic attractions to coiled-coil stability. Protein Eng. 1994 Nov;7(11):1365–1372. doi: 10.1093/protein/7.11.1365. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES