Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Jan;165(1):88–93. doi: 10.1128/jb.165.1.88-93.1986

A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro.

J Lapointe, L Duplain, M Proulx
PMCID: PMC214374  PMID: 3079749

Abstract

In the presence or absence of its regulatory factor, the monomeric glutamyl-tRNA synthetase from Bacillus subtilis can aminoacylate in vitro with glutamate both tRNAGlu and tRNAGln from B. subtilis and tRNAGln1 but not tRNAGln2 or tRNAGlu from Escherichia coli. The Km and Vmax values of the enzyme for its substrates in these homologous or heterologous aminoacylation reactions are very similar. This enzyme is the only aminoacyl-tRNA synthetase reported to aminoacylate with normal kinetic parameters two tRNA species coding for different amino acids and to misacylate at a high rate a heterologous tRNA under normal aminoacylation conditions. The exceptional lack of specificity of this enzyme for its tRNAGlu and tRNAGln substrates, together with structural and catalytic peculiarities shared with the E. coli glutamyl- and glutaminyl-tRNA synthetases, suggests the existence of a close evolutionary linkage between the aminoacyl-tRNA synthetases specific for glutamate and those specific for glutamine. A comparison of the primary structures of the three tRNAs efficiently charged by the B. subtilis glutamyl-tRNA synthetase with those of E. coli tRNAGlu and tRNAGln2 suggests that this enzyme interacts with the G64-C50 or G64-U50 in the T psi stem of its tRNA substrates.

Full text

PDF
88

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonnet J., Ebel J. P. Interpretation of incomplete reactions in tRNA aminoacylation. Aminoacylation of yeast tRNA Val II with yeast valyl-tRNA synthetase. Eur J Biochem. 1972 Dec 4;31(2):335–344. doi: 10.1111/j.1432-1033.1972.tb02538.x. [DOI] [PubMed] [Google Scholar]
  2. Deutscher M. P. Rat liver glutamyl ribonucleic acid synthetase. I. Purification and evidence for separate enzymes for glutamic acid and glutamine. J Biol Chem. 1967 Mar 25;242(6):1123–1131. [PubMed] [Google Scholar]
  3. Dietrich A., Kern D., Bonnet J., Giegé R., Ebel J. P. Interpretation of tRNA-mischarging kinetics. Eur J Biochem. 1976 Nov 1;70(1):147–158. doi: 10.1111/j.1432-1033.1976.tb10965.x. [DOI] [PubMed] [Google Scholar]
  4. EVANS J. B., NIVEN C. F., Jr Nutrition of the heterofermentative Lactobacilli that cause greening of cured meat products. J Bacteriol. 1951 Nov;62(5):599–603. doi: 10.1128/jb.62.5.599-603.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giegé R., Kern D., Ebel J. P., Grosjean H., de Henau S., Chantrenne H. Incorrect aminoacylations involving tRNAs or valyl-tRNA synthetase from Bacillus stearothermophilus. Eur J Biochem. 1974 Jun 15;45(2):351–362. doi: 10.1111/j.1432-1033.1974.tb03560.x. [DOI] [PubMed] [Google Scholar]
  6. Hoben P., Uemura H., Yamao F., Cheung A., Swanson R., Sumner-Smith M., Söll D. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes. Fed Proc. 1984 Dec;43(15):2972–2976. [PubMed] [Google Scholar]
  7. Kern D., Giegé R., Ebel J. P. Incorrect aminoacylatins catalysed by the phenylalanyl-and valyl-tRNA synthetases from yeast. Eur J Biochem. 1972 Nov 21;31(1):148–155. doi: 10.1111/j.1432-1033.1972.tb02513.x. [DOI] [PubMed] [Google Scholar]
  8. Kern D., Lapointe J. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates. Biochemistry. 1979 Dec 25;18(26):5809–5818. doi: 10.1021/bi00593a010. [DOI] [PubMed] [Google Scholar]
  9. Kern D., Lapointe J. The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. A steady-state kinetic investigation. Eur J Biochem. 1981 Mar 16;115(1):29–38. doi: 10.1111/j.1432-1033.1981.tb06193.x. [DOI] [PubMed] [Google Scholar]
  10. Kern D., Lapointe J. The glutamyl-tRNA synthetase of Escherichia coli: substrate-induced protection against its thermal inactivation. Nucleic Acids Res. 1979 Sep 25;7(2):501–515. doi: 10.1093/nar/7.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kern D., Potier S., Boulanger Y., Lapointe J. The monomeric glutamyl-tRNA synthetase of Escherichia coli. Purification and relation between its structural and catalytic properties. J Biol Chem. 1979 Jan 25;254(2):518–524. [PubMed] [Google Scholar]
  12. LAZZARINI R. A., MEHLER A. H. SEPARATION OF SPECIFIC GLUTAMATE- AND GLUTAMINE-ACTIVATING ENZYMES FROM ESCHERICHIA COLI. Biochemistry. 1964 Oct;3:1445–1449. doi: 10.1021/bi00898a009. [DOI] [PubMed] [Google Scholar]
  13. Lee L. W., Ravel J. M., Shive W. A general involvement of acceptor ribonucleic acid in the initial activation step of glutamic acid and glutamine. Arch Biochem Biophys. 1967 Sep;121(3):614–618. doi: 10.1016/0003-9861(67)90045-8. [DOI] [PubMed] [Google Scholar]
  14. Martin N. C., Rabinowitz M., Fukuhara H. Yeast mitochondrial DNA specifies tRNA for 19 amino acids. Deletion mapping of the tRNA genes. Biochemistry. 1977 Oct 18;16(21):4672–4677. doi: 10.1021/bi00640a022. [DOI] [PubMed] [Google Scholar]
  15. Martin N., Rabinowitz M., Fukuhara H. Isoaccepting mitochondrial glutamyl-tRNA species transcribed from different regions of the mitochondrial genome of Saccharomyces cerevisiae. J Mol Biol. 1976 Mar 5;101(3):285–296. doi: 10.1016/0022-2836(76)90148-0. [DOI] [PubMed] [Google Scholar]
  16. Ohashi Ziro, Harada Fumio, Nishimura Susumu. Primary sequence of glutamic acid tRNA II from Escherichia coli. FEBS Lett. 1972 Feb 1;20(2):239–241. doi: 10.1016/0014-5793(72)80804-4. [DOI] [PubMed] [Google Scholar]
  17. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  18. Proulx M., Duplain L., Lacoste L., Yaguchi M., Lapointe J. The monomeric glutamyl-tRNA synthetase from Bacillus subtilis 168 and its regulatory factor. Their purification, characterization, and the study of their interaction. J Biol Chem. 1983 Jan 25;258(2):753–759. [PubMed] [Google Scholar]
  19. Proulx M., Lapointe J. Purification of glutamyl-tRNA synthetase from Bacillus subtilis. Methods Enzymol. 1985;113:50–54. doi: 10.1016/s0076-6879(85)13010-7. [DOI] [PubMed] [Google Scholar]
  20. RAVEL J. M., WANG S. F., HEINEMEYER C., SHIVE W. GLUTAMYL AND GLUTAMINYL RIBONUCLEIC ACID SYNTHETASES OF ESCHERICHIA COLI W. SEPARATION, PROPERTIES, AND STIMULATION OF ADENOSINE TRIPHOSPHATE-PYROPHOSPHATE EXCHANGE BY ACCEPTOR RIBONUCLEIC ACID. J Biol Chem. 1965 Jan;240:432–438. [PubMed] [Google Scholar]
  21. Schimmel P. R., Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. [DOI] [PubMed] [Google Scholar]
  22. Sprinzl M., Moll J., Meissner F., Hartmann T. Compilation of tRNA sequences. Nucleic Acids Res. 1985;13 (Suppl):r1–49. doi: 10.1093/nar/13.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vold B. S. Preparation of tRNA's and aminoacyl-tRNA synthetases from Bacillus subtilis cells at various stages of growth and spores. Methods Enzymol. 1974;29:502–510. doi: 10.1016/0076-6879(74)29045-1. [DOI] [PubMed] [Google Scholar]
  24. Vold B. S. Structure and organization of genes for transfer ribonucleic acid in Bacillus subtilis. Microbiol Rev. 1985 Mar;49(1):71–80. doi: 10.1128/mr.49.1.71-80.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wawrousek E. F., Narasimhan N., Hansen J. N. Two large clusters with thirty-seven transfer RNA genes adjacent to ribosomal RNA gene sets in Bacillus subtilis. Sequence and organization of trrnD and trrnE gene clusters. J Biol Chem. 1984 Mar 25;259(6):3694–3702. [PubMed] [Google Scholar]
  26. Webster T., Tsai H., Kula M., Mackie G. A., Schimmel P. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Science. 1984 Dec 14;226(4680):1315–1317. doi: 10.1126/science.6390679. [DOI] [PubMed] [Google Scholar]
  27. Wetzel R. Aminoacyl-tRNA synthetase families and their significance to the origin of the genetic code. Orig Life. 1978 Sep;9(1):39–50. doi: 10.1007/BF00929712. [DOI] [PubMed] [Google Scholar]
  28. Wilcox M. Gamma-glutamyl phosphate attached to glutamine-specific tRNA. A precursor of glutaminyl-tRNA in Bacillus subtilis. Eur J Biochem. 1969 Dec;11(3):405–412. doi: 10.1111/j.1432-1033.1969.tb00788.x. [DOI] [PubMed] [Google Scholar]
  29. Wilcox M. Gamma-phosphoryl ester of glu-tRNA-GLN as an intermediate in Bacillus subtilis glutaminyl-tRNA synthesis. Cold Spring Harb Symp Quant Biol. 1969;34:521–528. doi: 10.1101/sqb.1969.034.01.059. [DOI] [PubMed] [Google Scholar]
  30. Wilcox M., Nirenberg M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A. 1968 Sep;61(1):229–236. doi: 10.1073/pnas.61.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamada Y., Ohki M., Ishikura H. The nucleotide sequence of Bacillus subtilis tRNA genes. Nucleic Acids Res. 1983 May 25;11(10):3037–3045. doi: 10.1093/nar/11.10.3037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yang W. K., Novelli G. D. Isoaccepting +RNA's in mouse plasma cell tumors that synthesize different myeloma protein. Biochem Biophys Res Commun. 1968 May 23;31(4):534–539. doi: 10.1016/0006-291x(68)90510-x. [DOI] [PubMed] [Google Scholar]
  33. Yaniv M., Folk W. R. The nucleotide sequences of the two glutamine transfer ribonucleic acids from Escherichia coli. J Biol Chem. 1975 May 10;250(9):3243–3253. [PubMed] [Google Scholar]
  34. Yarus M., Mertes M. The variety of intraspecific misacylations carried out by isoleucyl transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem. 1973 Oct 10;248(19):6744–6749. [PubMed] [Google Scholar]
  35. Yarus M. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli. Biochemistry. 1972 Jun 6;11(12):2352–2361. doi: 10.1021/bi00762a022. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES