Abstract
As a model for analyzing the role of charge repulsion in proteins and its shielding by the solvent, we designed a peptide of 27 amino acid residues that formed a homodimeric coiled-coil. The interface between the coils consisted of hydrophobic Leu and Val residues, and 10 Lys residues per monomer were incorporated into the positions exposed to solvent. During the preparation of a disulfide-linked dimer in which the two peptides were linked in parallel by the two disulfide bonds located at the N and C terminals, a cyclic monomer with an intramolecular disulfide bond was also obtained. On the basis of CD and 1H-NMR, the conformational stabilities of these isomers and several reference peptides were examined. Whereas all these peptides were unfolded in the absence of salt at pH 4.7 and 20 degrees C, the addition of NaClO4 cooperatively stabilized the alpha-helical conformation. The crosslinking of the peptides by disulfide bonds significantly decreased the midpoint salt concentration of the transition. The 1H-NMR spectra in the presence of NaClO4 suggested that, whereas the disulfide-bonded dimer assumed a native-like conformation, the cyclic monomer assumed a molten globule-like conformation with disordered side chains. However, the cyclic monomer exhibited cooperative transitions against temperature and Gdn-HCl that were only slightly less cooperative than those of the disulfide-bonded parallel dimer. These results indicate that the charge repulsion critically destabilizes the native-like state as well as the molten globule-like state, and that the solvent-dependent charge repulsion may be useful for controlling the conformation of designed peptides.
Full Text
The Full Text of this article is available as a PDF (843.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chakrabartty A., Baldwin R. L. Stability of alpha-helices. Adv Protein Chem. 1995;46:141–176. [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
- Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goto Y., Aimoto S. Anion and pH-dependent conformational transition of an amphiphilic polypeptide. J Mol Biol. 1991 Mar 20;218(2):387–396. doi: 10.1016/0022-2836(91)90720-q. [DOI] [PubMed] [Google Scholar]
- Goto Y., Fink A. L. Acid-induced folding of heme proteins. Methods Enzymol. 1994;232:3–15. doi: 10.1016/0076-6879(94)32039-x. [DOI] [PubMed] [Google Scholar]
- Goto Y., Hagihara Y., Hamada D., Hoshino M., Nishii I. Acid-induced unfolding and refolding transitions of cytochrome c: a three-state mechanism in H2O and D2O. Biochemistry. 1993 Nov 9;32(44):11878–11885. doi: 10.1021/bi00095a017. [DOI] [PubMed] [Google Scholar]
- Goto Y., Hagihara Y. Mechanism of the conformational transition of melittin. Biochemistry. 1992 Jan 28;31(3):732–738. doi: 10.1021/bi00118a014. [DOI] [PubMed] [Google Scholar]
- Goto Y., Nishikiori S. Role of electrostatic repulsion in the acidic molten globule of cytochrome c. J Mol Biol. 1991 Dec 5;222(3):679–686. doi: 10.1016/0022-2836(91)90504-y. [DOI] [PubMed] [Google Scholar]
- Goto Y., Okamura N., Aimoto S. ATP-induced conformational transition of denatured proteins. J Biochem. 1991 May;109(5):746–750. doi: 10.1093/oxfordjournals.jbchem.a123451. [DOI] [PubMed] [Google Scholar]
- Habermann E. Bee and wasp venoms. Science. 1972 Jul 28;177(4046):314–322. doi: 10.1126/science.177.4046.314. [DOI] [PubMed] [Google Scholar]
- Hagihara Y., Oobatake M., Goto Y. Thermal unfolding of tetrameric melittin: comparison with the molten globule state of cytochrome c. Protein Sci. 1994 Sep;3(9):1418–1429. doi: 10.1002/pro.5560030908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoshino M., Goto Y. Perchlorate-induced formation of the alpha-helical structure of mastoparan. J Biochem. 1994 Oct;116(4):910–915. doi: 10.1093/oxfordjournals.jbchem.a124615. [DOI] [PubMed] [Google Scholar]
- Kataoka M., Kuwajima K., Tokunaga F., Goto Y. Structural characterization of the molten globule of alpha-lactalbumin by solution X-ray scattering. Protein Sci. 1997 Feb;6(2):422–430. doi: 10.1002/pro.5560060219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenar K. T., García-Moreno B., Freire E. A calorimetric characterization of the salt dependence of the stability of the GCN4 leucine zipper. Protein Sci. 1995 Sep;4(9):1934–1938. doi: 10.1002/pro.5560040929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lavigne P., Kondejewski L. H., Houston M. E., Jr, Sönnichsen F. D., Lix B., Skyes B. D., Hodges R. S., Kay C. M. Preferential heterodimeric parallel coiled-coil formation by synthetic Max and c-Myc leucine zippers: a description of putative electrostatic interactions responsible for the specificity of heterodimerization. J Mol Biol. 1995 Dec 1;254(3):505–520. doi: 10.1006/jmbi.1995.0634. [DOI] [PubMed] [Google Scholar]
- Lavigne P., Sönnichsen F. D., Kay C. M., Hodges R. S. Interhelical salt bridges, coiled-coil stability, and specificity of dimerization. Science. 1996 Feb 23;271(5252):1136–1138. doi: 10.1126/science.271.5252.1136. [DOI] [PubMed] [Google Scholar]
- Lumb K. J., Kim P. S. Measurement of interhelical electrostatic interactions in the GCN4 leucine zipper. Science. 1995 Apr 21;268(5209):436–439. doi: 10.1126/science.7716550. [DOI] [PubMed] [Google Scholar]
- Lumb K. J., Kim P. S. Response: how much solar radiation do clouds absorb? Science. 1996 Feb 23;271(5252):1137–1138. doi: 10.1126/science.271.5252.1137. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
- Nakamura H. Roles of electrostatic interaction in proteins. Q Rev Biophys. 1996 Feb;29(1):1–90. doi: 10.1017/s0033583500005746. [DOI] [PubMed] [Google Scholar]
- O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
- O'Shea E. K., Rutkowski R., Kim P. S. Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell. 1992 Feb 21;68(4):699–708. doi: 10.1016/0092-8674(92)90145-3. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Measuring and increasing protein stability. Trends Biotechnol. 1990 Apr;8(4):93–98. doi: 10.1016/0167-7799(90)90146-o. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Intermediate states in protein folding. J Mol Biol. 1996 May 24;258(5):707–725. doi: 10.1006/jmbi.1996.0280. [DOI] [PubMed] [Google Scholar]
- Talbot J. C., Dufourcq J., de Bony J., Faucon J. F., Lussan C. Conformational change and self association of monomeric melittin. FEBS Lett. 1979 Jun 1;102(1):191–193. doi: 10.1016/0014-5793(79)80957-6. [DOI] [PubMed] [Google Scholar]
- Terwilliger T. C., Eisenberg D. The structure of melittin. I. Structure determination and partial refinement. J Biol Chem. 1982 Jun 10;257(11):6010–6015. doi: 10.2210/pdb1mlt/pdb. [DOI] [PubMed] [Google Scholar]
- Thompson K. S., Vinson C. R., Freire E. Thermodynamic characterization of the structural stability of the coiled-coil region of the bZIP transcription factor GCN4. Biochemistry. 1993 Jun 1;32(21):5491–5496. doi: 10.1021/bi00072a001. [DOI] [PubMed] [Google Scholar]
- Yang A. S., Honig B. On the pH dependence of protein stability. J Mol Biol. 1993 May 20;231(2):459–474. doi: 10.1006/jmbi.1993.1294. [DOI] [PubMed] [Google Scholar]
- Yu Y., Monera O. D., Hodges R. S., Privalov P. L. Ion pairs significantly stabilize coiled-coils in the absence of electrolyte. J Mol Biol. 1996 Jan 26;255(3):367–372. doi: 10.1006/jmbi.1996.0030. [DOI] [PubMed] [Google Scholar]
- Zhou N. E., Kay C. M., Hodges R. S. Disulfide bond contribution to protein stability: positional effects of substitution in the hydrophobic core of the two-stranded alpha-helical coiled-coil. Biochemistry. 1993 Mar 30;32(12):3178–3187. doi: 10.1021/bi00063a033. [DOI] [PubMed] [Google Scholar]
- Zitzewitz J. A., Bilsel O., Luo J., Jones B. E., Matthews C. R. Probing the folding mechanism of a leucine zipper peptide by stopped-flow circular dichroism spectroscopy. Biochemistry. 1995 Oct 3;34(39):12812–12819. doi: 10.1021/bi00039a042. [DOI] [PubMed] [Google Scholar]