Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jul;6(7):1563–1576. doi: 10.1002/pro.5560060720

Mutational analysis of the BPTI folding pathway: II. Effects of aromatic-->leucine substitutions on folding kinetics and thermodynamics.

J X Zhang 1, D P Goldenberg 1
PMCID: PMC2143748  PMID: 9232657

Abstract

The rates of the individual steps in the disulfide-coupled folding and unfolding of eight BPTI variants, each containing a single aromatic to leucine amino acid replacement, were measured. From this analysis, the contributions of the four phenylalanine and four tyrosine residues to the stabilities of the native protein and the disulfide-bonded folding intermediates were determined. While the substitutions were found to destabilize the native protein by 2 to 7 kcal/mol, they had significantly smaller effects on the intermediates that represent the earlier stages of folding, even when the site of the substitution was located within the ordered regions of the intermediates. These results suggest that stabilizing interactions contribute less to conformational stability in the context of a partially folded intermediate than in a fully folded native protein, perhaps because of decreased cooperativity among the individual interactions. The kinetic analysis also provides new information about the transition states associated with the slowest steps in folding and unfolding, supporting previous suggestions that these transition states are extensively unfolded. Although the substitutions caused large changes in the distribution of folding intermediates and in the rates of some steps in the folding pathway, the kinetically-preferred pathway for all of the variants involved intramolecular disulfide rearrangements, as observed previously for the wild-type protein. These results suggest that the predominance of the rearrangement mechanism reflects conformational constraints present relatively early in the folding pathway.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T. Mutational effects on protein stability. Annu Rev Biochem. 1989;58:765–798. doi: 10.1146/annurev.bi.58.070189.004001. [DOI] [PubMed] [Google Scholar]
  2. Alber T., Sun D. P., Nye J. A., Muchmore D. C., Matthews B. W. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry. 1987 Jun 30;26(13):3754–3758. doi: 10.1021/bi00387a002. [DOI] [PubMed] [Google Scholar]
  3. Baldwin R. L. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8069–8072. doi: 10.1073/pnas.83.21.8069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beasty A. M., Hurle M. R., Manz J. T., Stackhouse T., Onuffer J. J., Matthews C. R. Effects of the phenylalanine-22----leucine, glutamic acid-49----methionine, glycine-234----aspartic acid, and glycine-234----lysine mutations on the folding and stability of the alpha subunit of tryptophan synthase from Escherichia coli. Biochemistry. 1986 May 20;25(10):2965–2974. doi: 10.1021/bi00358a035. [DOI] [PubMed] [Google Scholar]
  5. Creighton T. E. An empirical approach to protein conformation stability and flexibility. Biopolymers. 1983 Jan;22(1):49–58. doi: 10.1002/bip.360220110. [DOI] [PubMed] [Google Scholar]
  6. Creighton T. E. Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor. J Mol Biol. 1977 Jun 25;113(2):275–293. doi: 10.1016/0022-2836(77)90142-5. [DOI] [PubMed] [Google Scholar]
  7. Creighton T. E., Darby N. J., Kemmink J. The roles of partly folded intermediates in protein folding. FASEB J. 1996 Jan;10(1):110–118. doi: 10.1096/fasebj.10.1.8566531. [DOI] [PubMed] [Google Scholar]
  8. Creighton T. E., Goldenberg D. P. Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J Mol Biol. 1984 Nov 5;179(3):497–526. doi: 10.1016/0022-2836(84)90077-9. [DOI] [PubMed] [Google Scholar]
  9. Creighton T. E. On the relevance of non-random polypeptide conformations for protein folding. Biophys Chem. 1988 Aug;31(1-2):155–162. doi: 10.1016/0301-4622(88)80021-8. [DOI] [PubMed] [Google Scholar]
  10. Creighton T. E. Protein folding. Biochem J. 1990 Aug 15;270(1):1–16. doi: 10.1042/bj2700001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Creighton T. E. The single-disulphide intermediates in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol. 1974 Aug 15;87(3):603–624. doi: 10.1016/0022-2836(74)90106-5. [DOI] [PubMed] [Google Scholar]
  12. Daggett V., Li A., Itzhaki L. S., Otzen D. E., Fersht A. R. Structure of the transition state for folding of a protein derived from experiment and simulation. J Mol Biol. 1996 Mar 29;257(2):430–440. doi: 10.1006/jmbi.1996.0173. [DOI] [PubMed] [Google Scholar]
  13. Darby N. J., Morin P. E., Talbo G., Creighton T. E. Refolding of bovine pancreatic trypsin inhibitor via non-native disulphide intermediates. J Mol Biol. 1995 Jun 2;249(2):463–477. doi: 10.1006/jmbi.1995.0309. [DOI] [PubMed] [Google Scholar]
  14. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  15. Fersht A. R. Mapping the structures of transition states and intermediates in folding: delineation of pathways at high resolution. Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):11–15. doi: 10.1098/rstb.1995.0040. [DOI] [PubMed] [Google Scholar]
  16. Garvey E. P., Swank J., Matthews C. R. A hydrophobic cluster forms early in the folding of dihydrofolate reductase. Proteins. 1989;6(3):259–266. doi: 10.1002/prot.340060308. [DOI] [PubMed] [Google Scholar]
  17. Goldenberg D. P., Berger J. M., Laheru D. A., Wooden S., Zhang J. X. Genetic dissection of pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5083–5087. doi: 10.1073/pnas.89.11.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goldenberg D. P. Dissecting the roles of individual interactions in protein stability: lessons from a circularized protein. J Cell Biochem. 1985;29(4):321–335. doi: 10.1002/jcb.240290406. [DOI] [PubMed] [Google Scholar]
  19. Goldenberg D. P., Frieden R. W., Haack J. A., Morrison T. B. Mutational analysis of a protein-folding pathway. Nature. 1989 Mar 9;338(6211):127–132. doi: 10.1038/338127a0. [DOI] [PubMed] [Google Scholar]
  20. Goldenberg D. P. Kinetic analysis of the folding and unfolding of a mutant form of bovine pancreatic trypsin inhibitor lacking the cysteine-14 and -38 thiols. Biochemistry. 1988 Apr 5;27(7):2481–2489. doi: 10.1021/bi00407a034. [DOI] [PubMed] [Google Scholar]
  21. Hughson F. M., Barrick D., Baldwin R. L. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry. 1991 Apr 30;30(17):4113–4118. doi: 10.1021/bi00231a001. [DOI] [PubMed] [Google Scholar]
  22. Itzhaki L. S., Otzen D. E., Fersht A. R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol. 1995 Nov 24;254(2):260–288. doi: 10.1006/jmbi.1995.0616. [DOI] [PubMed] [Google Scholar]
  23. Makhatadze G. I., Privalov P. L. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425. doi: 10.1016/s0065-3233(08)60548-3. [DOI] [PubMed] [Google Scholar]
  24. Marks C. B., Naderi H., Kosen P. A., Kuntz I. D., Anderson S. Mutants of bovine pancreatic trypsin inhibitor lacking cysteines 14 and 38 can fold properly. Science. 1987 Mar 13;235(4794):1370–1373. doi: 10.1126/science.2435002. [DOI] [PubMed] [Google Scholar]
  25. Marmorino J. L., Pielak G. J. A native tertiary interaction stabilizes the A state of cytochrome c. Biochemistry. 1995 Mar 14;34(10):3140–3143. doi: 10.1021/bi00010a002. [DOI] [PubMed] [Google Scholar]
  26. Matouschek A., Kellis J. T., Jr, Serrano L., Bycroft M., Fersht A. R. Transient folding intermediates characterized by protein engineering. Nature. 1990 Aug 2;346(6283):440–445. doi: 10.1038/346440a0. [DOI] [PubMed] [Google Scholar]
  27. Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
  28. Matthews C. R. Pathways of protein folding. Annu Rev Biochem. 1993;62:653–683. doi: 10.1146/annurev.bi.62.070193.003253. [DOI] [PubMed] [Google Scholar]
  29. Mendoza J. A., Jarstfer M. B., Goldenberg D. P. Effects of amino acid replacements on the reductive unfolding kinetics of pancreatic trypsin inhibitor. Biochemistry. 1994 Feb 8;33(5):1143–1148. doi: 10.1021/bi00171a013. [DOI] [PubMed] [Google Scholar]
  30. Oas T. G., Kim P. S. A peptide model of a protein folding intermediate. Nature. 1988 Nov 3;336(6194):42–48. doi: 10.1038/336042a0. [DOI] [PubMed] [Google Scholar]
  31. Peng Z. Y., Wu L. C., Schulman B. A., Kim P. S. Does the molten globule have a native-like tertiary fold? Philos Trans R Soc Lond B Biol Sci. 1995 Apr 29;348(1323):43–47. doi: 10.1098/rstb.1995.0044. [DOI] [PubMed] [Google Scholar]
  32. Perry K. M., Onuffer J. J., Gittelman M. S., Barmat L., Matthews C. R. Long-range electrostatic interactions can influence the folding, stability, and cooperativity of dihydrofolate reductase. Biochemistry. 1989 Sep 19;28(19):7961–7968. doi: 10.1021/bi00445a061. [DOI] [PubMed] [Google Scholar]
  33. Ptitsyn O. B. Structures of folding intermediates. Curr Opin Struct Biol. 1995 Feb;5(1):74–78. doi: 10.1016/0959-440x(95)80011-o. [DOI] [PubMed] [Google Scholar]
  34. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  35. Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):805–818. doi: 10.1016/0022-2836(92)90563-y. [DOI] [PubMed] [Google Scholar]
  36. Staley J. P., Kim P. S. Formation of a native-like subdomain in a partially folded intermediate of bovine pancreatic trypsin inhibitor. Protein Sci. 1994 Oct;3(10):1822–1832. doi: 10.1002/pro.5560031021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tsuji T., Chrunyk B. A., Chen X., Matthews C. R. Mutagenic analysis of the interior packing of an alpha/beta barrel protein. Effects on the stabilities and rates of interconversion of the native and partially folded forms of the alpha subunit of tryptophan synthase. Biochemistry. 1993 Jun 1;32(21):5566–5575. doi: 10.1021/bi00072a011. [DOI] [PubMed] [Google Scholar]
  38. Wagner G., Brühwiler D., Wüthrich K. Reinvestigation of the aromatic side-chains in the basic pancreatic trypsin inhibitor by heteronuclear two-dimensional nuclear magnetic resonance. J Mol Biol. 1987 Jul 5;196(1):227–231. doi: 10.1016/0022-2836(87)90524-9. [DOI] [PubMed] [Google Scholar]
  39. Weissman J. S., Kim P. S. A kinetic explanation for the rearrangement pathway of BPTI folding. Nat Struct Biol. 1995 Dec;2(12):1123–1130. doi: 10.1038/nsb1295-1123. [DOI] [PubMed] [Google Scholar]
  40. Weissman J. S., Kim P. S. Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9900–9904. doi: 10.1073/pnas.89.20.9900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weissman J. S., Kim P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science. 1991 Sep 20;253(5026):1386–1393. doi: 10.1126/science.1716783. [DOI] [PubMed] [Google Scholar]
  42. Wlodawer A., Deisenhofer J., Huber R. Comparison of two highly refined structures of bovine pancreatic trypsin inhibitor. J Mol Biol. 1987 Jan 5;193(1):145–156. doi: 10.1016/0022-2836(87)90633-4. [DOI] [PubMed] [Google Scholar]
  43. Zhang J. X., Goldenberg D. P. Amino acid replacement that eliminates kinetic traps in the folding pathway of pancreatic trypsin inhibitor. Biochemistry. 1993 Dec 28;32(51):14075–14081. doi: 10.1021/bi00214a001. [DOI] [PubMed] [Google Scholar]
  44. Zhang J. X., Goldenberg D. P. Mutational analysis of the BPTI folding pathway: I. Effects of aromatic-->leucine substitutions on the distribution of folding intermediates. Protein Sci. 1997 Jul;6(7):1549–1562. doi: 10.1002/pro.5560060719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van Mierlo C. P., Darby N. J., Keeler J., Neuhaus D., Creighton T. E. Partially folded conformation of the (30-51) intermediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor. 1H and 15N resonance assignments and determination of backbone dynamics from 15N relaxation measurements. J Mol Biol. 1993 Feb 20;229(4):1125–1146. doi: 10.1006/jmbi.1993.1108. [DOI] [PubMed] [Google Scholar]
  46. van Mierlo C. P., Darby N. J., Neuhaus D., Creighton T. E. (14-38, 30-51) double-disulphide intermediate in folding of bovine pancreatic trypsin inhibitor: a two-dimensional 1H nuclear magnetic resonance study. J Mol Biol. 1991 Nov 20;222(2):353–371. doi: 10.1016/0022-2836(91)90216-s. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES