Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jul;6(7):1375–1386. doi: 10.1002/pro.5560060701

Conformational substates in enzyme mechanism: the 120 K structure of alpha-lytic protease at 1.5 A resolution.

S D Rader 1, D A Agard 1
PMCID: PMC2143753  PMID: 9232638

Abstract

Insight into the dynamic properties of alpha-lytic protease (alpha LP) has been obtained through the use of low-temperature X-ray crystallography and multiple-conformation refinement. Previous studies of alpha LP have shown that the residues around the active site are able to move significantly to accommodate substrates of different sizes. Here we show a link between the ability to accommodate ligands and the dynamics of the binding pocket. Although the structure of alpha LP at 120 K has B-factors with a uniformly low value of 4.8 A2 for the main chain, four regions stand out as having significantly higher B-factors. Because thermal motion should be suppressed at cryogenic temperatures, the high B-factors are interpreted as the result of trapped conformational substates. The active site residues that are perturbed during accommodation of different substrates are precisely those showing conformational substates, implying that substrate binding selects a subset of conformations from the ensemble of accessible states. To better characterize the precise nature of these substates, a protein model consisting of 16 structures has been refined and evaluated. The model reveals a number of features that could not be well-described by conventional B-factors: for example, 40% of the main-chain residue conformations are distributed asymmetrically or in discrete clusters. Furthermore, these data demonstrate an unexpected correlation between motions on either side of the binding pocket that we suggest is a consequence of "dynamic close packing." These results provide strong evidence for the role of protein dynamics in substrate binding and are consistent with the results of dynamic studies of ligand binding in myoglobin and ribonuclease A.

Full Text

The Full Text of this article is available as a PDF (6.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Gilbert W. A., Ponzi D. R., Petsko G. A. The role of mobility in the substrate binding and catalytic machinery of enzymes. Ciba Found Symp. 1983;93:4–24. doi: 10.1002/9780470720752.ch2. [DOI] [PubMed] [Google Scholar]
  2. Bone R., Frank D., Kettner C. A., Agard D. A. Structural analysis of specificity: alpha-lytic protease complexes with analogues of reaction intermediates. Biochemistry. 1989 Sep 19;28(19):7600–7609. doi: 10.1021/bi00445a015. [DOI] [PubMed] [Google Scholar]
  3. Bone R., Fujishige A., Kettner C. A., Agard D. A. Structural basis for broad specificity in alpha-lytic protease mutants. Biochemistry. 1991 Oct 29;30(43):10388–10398. doi: 10.1021/bi00107a005. [DOI] [PubMed] [Google Scholar]
  4. Bone R., Sampson N. S., Bartlett P. A., Agard D. A. Crystal structures of alpha-lytic protease complexes with irreversibly bound phosphonate esters. Biochemistry. 1991 Feb 26;30(8):2263–2272. doi: 10.1021/bi00222a032. [DOI] [PubMed] [Google Scholar]
  5. Bone R., Shenvi A. B., Kettner C. A., Agard D. A. Serine protease mechanism: structure of an inhibitory complex of alpha-lytic protease and a tightly bound peptide boronic acid. Biochemistry. 1987 Dec 1;26(24):7609–7614. doi: 10.1021/bi00398a012. [DOI] [PubMed] [Google Scholar]
  6. Bone R., Silen J. L., Agard D. A. Structural plasticity broadens the specificity of an engineered protease. Nature. 1989 May 18;339(6221):191–195. doi: 10.1038/339191a0. [DOI] [PubMed] [Google Scholar]
  7. Brayer G. D., Delbaere L. T., James M. N. Molecular structure of the alpha-lytic protease from Myxobacter 495 at 2.8 Angstroms resolution. J Mol Biol. 1979 Jul 15;131(4):743–775. doi: 10.1016/0022-2836(79)90200-6. [DOI] [PubMed] [Google Scholar]
  8. Burling F. T., Weis W. I., Flaherty K. M., Brünger A. T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science. 1996 Jan 5;271(5245):72–77. doi: 10.1126/science.271.5245.72. [DOI] [PubMed] [Google Scholar]
  9. Caspar D. L., Clarage J., Salunke D. M., Clarage M. Liquid-like movements in crystalline insulin. Nature. 1988 Apr 14;332(6165):659–662. doi: 10.1038/332659a0. [DOI] [PubMed] [Google Scholar]
  10. Chen H., Hughes D. D., Chan T. A., Sedat J. W., Agard D. A. IVE (Image Visualization Environment): a software platform for all three-dimensional microscopy applications. J Struct Biol. 1996 Jan-Feb;116(1):56–60. doi: 10.1006/jsbi.1996.0010. [DOI] [PubMed] [Google Scholar]
  11. Cusack S., Doster W. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering. Biophys J. 1990 Jul;58(1):243–251. doi: 10.1016/S0006-3495(90)82369-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doucet J., Benoit J. P. Molecular dynamics studied by analysis of the X-ray diffuse scattering from lysozyme crystals. Nature. 1987 Feb 12;325(6105):643–646. doi: 10.1038/325643a0. [DOI] [PubMed] [Google Scholar]
  13. Earnest T., Fauman E., Craik C. S., Stroud R. 1.59 A structure of trypsin at 120 K: comparison of low temperature and room temperature structures. Proteins. 1991;10(3):171–187. doi: 10.1002/prot.340100303. [DOI] [PubMed] [Google Scholar]
  14. Frauenfelder H., Hartmann H., Karplus M., Kuntz I. D., Jr, Kuriyan J., Parak F., Petsko G. A., Ringe D., Tilton R. F., Jr, Connolly M. L. Thermal expansion of a protein. Biochemistry. 1987 Jan 13;26(1):254–261. doi: 10.1021/bi00375a035. [DOI] [PubMed] [Google Scholar]
  15. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  16. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  17. Fujinaga M., Delbaere L. T., Brayer G. D., James M. N. Refined structure of alpha-lytic protease at 1.7 A resolution. Analysis of hydrogen bonding and solvent structure. J Mol Biol. 1985 Aug 5;184(3):479–502. doi: 10.1016/0022-2836(85)90296-7. [DOI] [PubMed] [Google Scholar]
  18. Hartmann H., Parak F., Steigemann W., Petsko G. A., Ponzi D. R., Frauenfelder H. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4967–4971. doi: 10.1073/pnas.79.16.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hayward S., Kitao A., Go N. Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis. Proteins. 1995 Oct;23(2):177–186. doi: 10.1002/prot.340230207. [DOI] [PubMed] [Google Scholar]
  20. Kettner C. A., Bone R., Agard D. A., Bachovchin W. W. Kinetic properties of the binding of alpha-lytic protease to peptide boronic acids. Biochemistry. 1988 Oct 4;27(20):7682–7688. doi: 10.1021/bi00420a017. [DOI] [PubMed] [Google Scholar]
  21. Kossiakoff A. A., Randal M., Guenot J., Eigenbrot C. Variability of conformations at crystal contacts in BPTI represent true low-energy structures: correspondence among lattice packing and molecular dynamics structures. Proteins. 1992 Sep;14(1):65–74. doi: 10.1002/prot.340140108. [DOI] [PubMed] [Google Scholar]
  22. Kurinov I. V., Harrison R. W. The influence of temperature on lysozyme crystals. Structure and dynamics of protein and water. Acta Crystallogr D Biol Crystallogr. 1995 Jan 1;51(Pt 1):98–109. doi: 10.1107/S0907444994009261. [DOI] [PubMed] [Google Scholar]
  23. Kuriyan J., Osapay K., Burley S. K., Brünger A. T., Hendrickson W. A., Karplus M. Exploration of disorder in protein structures by X-ray restrained molecular dynamics. Proteins. 1991;10(4):340–358. doi: 10.1002/prot.340100407. [DOI] [PubMed] [Google Scholar]
  24. Leeson D. T., Wiersma D. A. Looking into the energy landscape of myoglobin. Nat Struct Biol. 1995 Oct;2(10):848–851. doi: 10.1038/nsb1095-848. [DOI] [PubMed] [Google Scholar]
  25. Mace J. E., Agard D. A. Kinetic and structural characterization of mutations of glycine 216 in alpha-lytic protease: a new target for engineering substrate specificity. J Mol Biol. 1995 Dec 8;254(4):720–736. doi: 10.1006/jmbi.1995.0650. [DOI] [PubMed] [Google Scholar]
  26. Mace J. E., Wilk B. J., Agard D. A. Functional linkage between the active site of alpha-lytic protease and distant regions of structure: scanning alanine mutagenesis of a surface loop affects activity and substrate specificity. J Mol Biol. 1995 Aug 4;251(1):116–134. doi: 10.1006/jmbi.1995.0420. [DOI] [PubMed] [Google Scholar]
  27. Rasmussen B. F., Stock A. M., Ringe D., Petsko G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature. 1992 Jun 4;357(6377):423–424. doi: 10.1038/357423a0. [DOI] [PubMed] [Google Scholar]
  28. Richards F. M. Areas, volumes, packing and protein structure. Annu Rev Biophys Bioeng. 1977;6:151–176. doi: 10.1146/annurev.bb.06.060177.001055. [DOI] [PubMed] [Google Scholar]
  29. Ringe D., Petsko G. A. Study of protein dynamics by X-ray diffraction. Methods Enzymol. 1986;131:389–433. doi: 10.1016/0076-6879(86)31050-4. [DOI] [PubMed] [Google Scholar]
  30. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  31. Smith J. L., Hendrickson W. A., Honzatko R. B., Sheriff S. Structural heterogeneity in protein crystals. Biochemistry. 1986 Sep 9;25(18):5018–5027. doi: 10.1021/bi00366a008. [DOI] [PubMed] [Google Scholar]
  32. Thüne T., Badger J. Thermal diffuse X-ray scattering and its contribution to understanding protein dynamics. Prog Biophys Mol Biol. 1995;63(3):251–276. doi: 10.1016/0079-6107(95)00006-2. [DOI] [PubMed] [Google Scholar]
  33. Tilton R. F., Jr, Dewan J. C., Petsko G. A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry. 1992 Mar 10;31(9):2469–2481. doi: 10.1021/bi00124a006. [DOI] [PubMed] [Google Scholar]
  34. Whitaker D. R., Jurásek L., Roy C. The nature of the bacteriolytic proteases of Sorangium sp. Biochem Biophys Res Commun. 1966 Jul 20;24(2):173–178. doi: 10.1016/0006-291x(66)90715-7. [DOI] [PubMed] [Google Scholar]
  35. Young A. C., Tilton R. F., Dewan J. C. Thermal expansion of hen egg-white lysozyme. Comparison of the 1.9 A resolution structures of the tetragonal form of the enzyme at 100 K and 298 K. J Mol Biol. 1994 Jan 7;235(1):302–317. doi: 10.1016/s0022-2836(05)80034-8. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES