Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Jul;6(7):1405–1411. doi: 10.1002/pro.5560060704

Synthesis and characterization of histidine-phosphorylated peptides.

K F Medzihradszky 1, N J Phillipps 1, L Senderowicz 1, P Wang 1, C W Turck 1
PMCID: PMC2143754  PMID: 9232641

Abstract

Posttranslational phosphorylation of proteins is an important event in many cellular processes. Whereas phosphoesters of serine, threonine, and tyrosine have been studied extensively, only limited information is available for other amino acids modified by a phosphate group. The formation of phosphohistidine residues in proteins was discovered originally in prokaryotic organisms, but also has been found recently in eukaryotic cells. We describe methods for the synthesis and analysis of phosphohistidine-containing peptides, a prerequisite for the investigation of the role of this posttranslational modification in cellular processes.

Full Text

The Full Text of this article is available as a PDF (676.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonfini L., Migliaccio E., Pelicci G., Lanfrancone L., Pelicci P. G. Not all Shc's roads lead to Ras. Trends Biochem Sci. 1996 Jul;21(7):257–261. [PubMed] [Google Scholar]
  2. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  3. Charest A., Wagner J., Jacob S., McGlade C. J., Tremblay M. L. Phosphotyrosine-independent binding of SHC to the NPLH sequence of murine protein-tyrosine phosphatase-PEST. Evidence for extended phosphotyrosine binding/phosphotyrosine interaction domain recognition specificity. J Biol Chem. 1996 Apr 5;271(14):8424–8429. doi: 10.1074/jbc.271.14.8424. [DOI] [PubMed] [Google Scholar]
  4. Crovello C. S., Furie B. C., Furie B. Histidine phosphorylation of P-selectin upon stimulation of human platelets: a novel pathway for activation-dependent signal transduction. Cell. 1995 Jul 28;82(2):279–286. doi: 10.1016/0092-8674(95)90315-1. [DOI] [PubMed] [Google Scholar]
  5. Escobedo J. A., Kaplan D. R., Kavanaugh W. M., Turck C. W., Williams L. T. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol Cell Biol. 1991 Feb;11(2):1125–1132. doi: 10.1128/mcb.11.2.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fantl W. J., Escobedo J. A., Martin G. A., Turck C. W., del Rosario M., McCormick F., Williams L. T. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell. 1992 May 1;69(3):413–423. doi: 10.1016/0092-8674(92)90444-h. [DOI] [PubMed] [Google Scholar]
  7. Gassner M., Stehlik D., Schrecker O., Hengstenberg W., Maurer W., Rüterjans H. The phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. 2. 1H and 31P-nuclear-magnetic-resonance studies on the phosphocarrier protein HPr, phosphohistidines and phosphorylated HPr. Eur J Biochem. 1977 May 2;75(1):287–296. doi: 10.1111/j.1432-1033.1977.tb11528.x. [DOI] [PubMed] [Google Scholar]
  8. Gorman J. J., Ferguson B. L., Nguyen T. B. Use of 2,6-dihydroxyacetophenone for analysis of fragile peptides, disulphide bonding and small proteins by matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom. 1996;10(5):529–536. doi: 10.1002/(SICI)1097-0231(19960331)10:5<529::AID-RCM522>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  9. Hultquist D. E., Moyer R. W., Boyer P. D. The preparation and characterization of 1-phosphohistidine and 3-phosphohistidine. Biochemistry. 1966 Jan;5(1):322–331. doi: 10.1021/bi00865a041. [DOI] [PubMed] [Google Scholar]
  10. Matthews H. R. Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol Ther. 1995;67(3):323–350. doi: 10.1016/0163-7258(95)00020-8. [DOI] [PubMed] [Google Scholar]
  11. Ota I. M., Varshavsky A. A yeast protein similar to bacterial two-component regulators. Science. 1993 Oct 22;262(5133):566–569. doi: 10.1126/science.8211183. [DOI] [PubMed] [Google Scholar]
  12. Posas F., Wurgler-Murphy S. M., Maeda T., Witten E. A., Thai T. C., Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell. 1996 Sep 20;86(6):865–875. doi: 10.1016/s0092-8674(00)80162-2. [DOI] [PubMed] [Google Scholar]
  13. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  14. Wei Y. F., Matthews H. R. Identification of phosphohistidine in proteins and purification of protein-histidine kinases. Methods Enzymol. 1991;200:388–414. doi: 10.1016/0076-6879(91)00156-q. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES