Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Aug;6(8):1727–1733. doi: 10.1002/pro.5560060813

The effect of denaturants on protein structure.

J Dunbar 1, H P Yennawar 1, S Banerjee 1, J Luo 1, G K Farber 1
PMCID: PMC2143764  PMID: 9260285

Abstract

Virtually all studies of the protein-folding reaction add either heat, acid, or a chemical denaturant to an aqueous protein solution in order to perturb the protein structure. When chemical denaturants are used, very high concentrations are usually necessary to observe any change in protein structure. In a solution with such high denaturant concentrations, both the structure of the protein and the structure of the solvent around the protein can be altered. X-ray crystallography is the obvious experimental technique to probe both types of changes. In this paper, we report the crystal structures of dihydrofolate reductase with urea and of ribonuclease A with guanidinium chloride. These two classic denaturants have similar effects on the native structure of the protein. The most important change that occurs is a reduction in the overall thermal factor. These structures offer a molecular explanation for the reduction in mobility. Although the reduction is observed only with the native enzyme in the crystal, a similar decrease in mobility has also been observed in the unfolded state in solution (Makhatadze G, Privalov PL. 1992. Protein interactions with urea and guanidinium chloride: A calorimetric study.

Full Text

The Full Text of this article is available as a PDF (735.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T. Mutational effects on protein stability. Annu Rev Biochem. 1989;58:765–798. doi: 10.1146/annurev.bi.58.070189.004001. [DOI] [PubMed] [Google Scholar]
  2. Bolin J. T., Filman D. J., Matthews D. A., Hamlin R. C., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. I. General features and binding of methotrexate. J Biol Chem. 1982 Nov 25;257(22):13650–13662. [PubMed] [Google Scholar]
  3. Breslow R., Guo T. Surface tension measurements show that chaotropic salting-in denaturants are not just water-structure breakers. Proc Natl Acad Sci U S A. 1990 Jan;87(1):167–169. doi: 10.1073/pnas.87.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bystroff C., Oatley S. J., Kraut J. Crystal structures of Escherichia coli dihydrofolate reductase: the NADP+ holoenzyme and the folate.NADP+ ternary complex. Substrate binding and a model for the transition state. Biochemistry. 1990 Apr 3;29(13):3263–3277. doi: 10.1021/bi00465a018. [DOI] [PubMed] [Google Scholar]
  5. Filman D. J., Bolin J. T., Matthews D. A., Kraut J. Crystal structures of Escherichia coli and Lactobacillus casei dihydrofolate reductase refined at 1.7 A resolution. II. Environment of bound NADPH and implications for catalysis. J Biol Chem. 1982 Nov 25;257(22):13663–13672. [PubMed] [Google Scholar]
  6. Hibbard L. S., Tulinsky A. Expression of functionality of alpha-chymotrypsin. Effects of guanidine hydrochloride and urea in the onset of denaturation. Biochemistry. 1978 Dec 12;17(25):5460–5468. doi: 10.1021/bi00618a021. [DOI] [PubMed] [Google Scholar]
  7. Iwakura M., Matthews C. R. Construction and characterization of a single polypeptide chain containing two enzymatically active dihydrofolate reductase domains. Protein Eng. 1992 Dec;5(8):791–796. doi: 10.1093/protein/5.8.791. [DOI] [PubMed] [Google Scholar]
  8. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  9. Kiefhaber T., Labhardt A. M., Baldwin R. L. Direct NMR evidence for an intermediate preceding the rate-limiting step in the unfolding of ribonuclease A. Nature. 1995 Jun 8;375(6531):513–515. doi: 10.1038/375513a0. [DOI] [PubMed] [Google Scholar]
  10. Kim K. S., Woodward C. Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. Biochemistry. 1993 Sep 21;32(37):9609–9613. doi: 10.1021/bi00088a013. [DOI] [PubMed] [Google Scholar]
  11. Lehmann M. S., Mason S. A., McIntyre G. J. Study of ethanol-lysozyme interactions using neutron diffraction. Biochemistry. 1985 Oct 8;24(21):5862–5869. doi: 10.1021/bi00342a026. [DOI] [PubMed] [Google Scholar]
  12. Lehmann M. S., Stansfield R. F. Binding of dimethyl sulfoxide to lysozyme in crystals, studied with neutron diffraction. Biochemistry. 1989 Aug 22;28(17):7028–7033. doi: 10.1021/bi00443a037. [DOI] [PubMed] [Google Scholar]
  13. Makhatadze G. I., Privalov P. L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol. 1992 Jul 20;226(2):491–505. doi: 10.1016/0022-2836(92)90963-k. [DOI] [PubMed] [Google Scholar]
  14. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  15. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  16. Petsko G. A., Ringe D. Fluctuations in protein structure from X-ray diffraction. Annu Rev Biophys Bioeng. 1984;13:331–371. doi: 10.1146/annurev.bb.13.060184.001555. [DOI] [PubMed] [Google Scholar]
  17. Pike A. C., Acharya K. R. A structural basis for the interaction of urea with lysozyme. Protein Sci. 1994 Apr;3(4):706–710. doi: 10.1002/pro.5560030419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schellman J. A. The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem. 1987;16:115–137. doi: 10.1146/annurev.bb.16.060187.000555. [DOI] [PubMed] [Google Scholar]
  19. Snape K. W., Tjian R., Blake C. C., Koshland D. E. Crystallographic study of the interaction of urea with lysozyme. Nature. 1974 Jul 26;250(464):295–298. doi: 10.1038/250295a0. [DOI] [PubMed] [Google Scholar]
  20. Thayer M. M., Haltiwanger R. C., Allured V. S., Gill S. C., Gill S. J. Peptide-urea interactions as observed in diketopiperazine-urea cocrystal. Biophys Chem. 1993 Apr;46(2):165–169. doi: 10.1016/0301-4622(93)85023-b. [DOI] [PubMed] [Google Scholar]
  21. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  22. Timasheff S. N. Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry. 1992 Oct 20;31(41):9857–9864. doi: 10.1021/bi00156a001. [DOI] [PubMed] [Google Scholar]
  23. Wlodawer A., Sjölin L. Structure of ribonuclease A: results of joint neutron and X-ray refinement at 2.0-A resolution. Biochemistry. 1983 May 24;22(11):2720–2728. doi: 10.1021/bi00280a021. [DOI] [PubMed] [Google Scholar]
  24. Yennawar N. H., Yennawar H. P., Farber G. K. X-ray crystal structure of gamma-chymotrypsin in hexane. Biochemistry. 1994 Jun 14;33(23):7326–7336. doi: 10.1021/bi00189a038. [DOI] [PubMed] [Google Scholar]
  25. Yonath A., Podjarny A., Honig B., Sielecki A., Traub W. Crystallographic studies of protein denaturation and renaturation. 2. Sodium dodecyl sulfate induced structural changes in triclinic lysozyme. Biochemistry. 1977 Apr 5;16(7):1418–1424. doi: 10.1021/bi00626a028. [DOI] [PubMed] [Google Scholar]
  26. Yonath A., Podjarny A., Honig B., Traub W., Sielecki A., Herzberg O., Moult J. Structural analysis of denaturant-protein interactions: comparison between the effects of bromoethanol and SDS on denaturation and renaturation of triclinic lysozyme. Biophys Struct Mech. 1977 Dec 27;4(1):27–36. doi: 10.1007/BF00538838. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES