Abstract
The 2H magnetic relaxation dispersion (NMRD) technique was used to characterize interactions of dimethyl sulfoxide (DMSO) with globular proteins. A difference NMRD experiment involving the N-acetylglucosamine trisaccharide inhibitor, demonstrated that the DMSO 2H NMRD profile in lysozyme solution is due to a single DMSO molecule bound in the active cleft, with a molecular order parameter of 0.47 +/- 0.05 and a residence time in the range 10 ns to 5 ms. With the aid of transverse 2H relaxation data, the upper bound of the residence time was further reduced to 100 microns. A 1H shift titration experiment was also performed, yielding a binding constant of 2.3 +/- 0.3 M-1 at 27 degrees C. In contrast to lysozyme, no DMSO dispersion was observed for bovine pancreatic trypsin inhibitor (BPTI), indicating that a stable DMSO-protein complex requires a cleft of appropriate geometry in addition to hydrogen-bond and hydrophobic interactions.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee S. K., Rupley J. A. Temperature and pH dependence of the binding of oligosaccharides to lysozyme. J Biol Chem. 1973 Mar 25;248(6):2117–2124. [PubMed] [Google Scholar]
- Blake C. C., Johnson L. N., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Crystallographic studies of the activity of hen egg-white lysozyme. Proc R Soc Lond B Biol Sci. 1967 Apr 18;167(1009):378–388. doi: 10.1098/rspb.1967.0035. [DOI] [PubMed] [Google Scholar]
- Blake C. C., Pulford W. C., Artymiuk P. J. X-ray studies of water in crystals of lysozyme. J Mol Biol. 1983 Jul 5;167(3):693–723. doi: 10.1016/s0022-2836(83)80105-3. [DOI] [PubMed] [Google Scholar]
- Broadhurst R. W., Dobson C. M., Hore P. J., Radford S. E., Rees M. L. A photochemically induced dynamic nuclear polarization study of denatured states of lysozyme. Biochemistry. 1991 Jan 15;30(2):405–412. doi: 10.1021/bi00216a015. [DOI] [PubMed] [Google Scholar]
- Cheetham J. C., Artymiuk P. J., Phillips D. C. Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 A resolution. J Mol Biol. 1992 Apr 5;224(3):613–628. doi: 10.1016/0022-2836(92)90548-x. [DOI] [PubMed] [Google Scholar]
- Dahlquist F. W., Raftery M. A. A nuclear magnetic resonance study of association equilibria and enzyme-boud environments of N-acetyl-D-glucosamine anomers and lysozyme. Biochemistry. 1968 Sep;7(9):3269–3276. doi: 10.1021/bi00849a033. [DOI] [PubMed] [Google Scholar]
- Dayie K. T., Wagner G., Lefèvre J. F. Theory and practice of nuclear spin relaxation in proteins. Annu Rev Phys Chem. 1996;47:243–282. doi: 10.1146/annurev.physchem.47.1.243. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Carlström G., Venu K., Halle B. Kinetics of DNA hydration. J Mol Biol. 1997 Apr 25;268(1):118–136. doi: 10.1006/jmbi.1996.0862. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Hydrogen exchange and protein hydration: the deuteron spin relaxation dispersions of bovine pancreatic trypsin inhibitor and ubiquitin. J Mol Biol. 1995 Feb 3;245(5):698–709. doi: 10.1006/jmbi.1994.0056. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Protein hydration dynamics in aqueous solution. Faraday Discuss. 1996;(103):227–244. doi: 10.1039/fd9960300227. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Halle B. Protein hydration dynamics in aqueous solution: a comparison of bovine pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. J Mol Biol. 1995 Feb 3;245(5):682–697. doi: 10.1006/jmbi.1994.0055. [DOI] [PubMed] [Google Scholar]
- Denisov V. P., Peters J., Hörlein H. D., Halle B. Using buried water molecules to explore the energy landscape of proteins. Nat Struct Biol. 1996 Jun;3(6):505–509. doi: 10.1038/nsb0696-505. [DOI] [PubMed] [Google Scholar]
- Evans P. A., Topping K. D., Woolfson D. N., Dobson C. M. Hydrophobic clustering in nonnative states of a protein: interpretation of chemical shifts in NMR spectra of denatured states of lysozyme. Proteins. 1991;9(4):248–266. doi: 10.1002/prot.340090404. [DOI] [PubMed] [Google Scholar]
- Fujita Y., Izumiguchi S., Noda Y. Effect of dimethylsulfoxide and its homologues on the thermal denaturation of lysozyme as measured by differential scanning calorimetry. Int J Pept Protein Res. 1982 Jan;19(1):25–31. doi: 10.1111/j.1399-3011.1982.tb03019.x. [DOI] [PubMed] [Google Scholar]
- HAMAGUCHI K. STRUCTURE OF MURAMIDASE (LYSOZYME). 8. EFFECT OF DIMETHYL SULFOXIDE ON THE STABILITY OF MURAMIDASE. J Biochem. 1964 Nov;56:441–449. doi: 10.1093/oxfordjournals.jbchem.a128015. [DOI] [PubMed] [Google Scholar]
- Jackson M., Mantsch H. H. Beware of proteins in DMSO. Biochim Biophys Acta. 1991 Jun 24;1078(2):231–235. doi: 10.1016/0167-4838(91)90563-f. [DOI] [PubMed] [Google Scholar]
- Jacob G. S., Brown R. D., 3rd, Koenig S. H. Interaction of bovine carbonic anhydrase with (neutral) aniline, phenol, and methanol. Biochemistry. 1980 Aug 5;19(16):3754–3765. doi: 10.1021/bi00557a017. [DOI] [PubMed] [Google Scholar]
- Kita Y., Arakawa T., Lin T. Y., Timasheff S. N. Contribution of the surface free energy perturbation to protein-solvent interactions. Biochemistry. 1994 Dec 20;33(50):15178–15189. doi: 10.1021/bi00254a029. [DOI] [PubMed] [Google Scholar]
- Klibanov A. M. Enzymatic catalysis in anhydrous organic solvents. Trends Biochem Sci. 1989 Apr;14(4):141–144. doi: 10.1016/0968-0004(89)90146-1. [DOI] [PubMed] [Google Scholar]
- Koenig S. H., Schillinger W. E. Nuclear magnetic relaxation dispersion in protein solutions. I. Apotransferrin. J Biol Chem. 1969 Jun 25;244(12):3283–3289. [PubMed] [Google Scholar]
- LOVELOCK J. E., BISHOP M. W. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature. 1959 May 16;183(4672):1394–1395. doi: 10.1038/1831394a0. [DOI] [PubMed] [Google Scholar]
- Lehmann M. S., Stansfield R. F. Binding of dimethyl sulfoxide to lysozyme in crystals, studied with neutron diffraction. Biochemistry. 1989 Aug 22;28(17):7028–7033. doi: 10.1021/bi00443a037. [DOI] [PubMed] [Google Scholar]
- Lian L. Y., Barsukov I. L., Sutcliffe M. J., Sze K. H., Roberts G. C. Protein-ligand interactions: exchange processes and determination of ligand conformation and protein-ligand contacts. Methods Enzymol. 1994;239:657–700. doi: 10.1016/s0076-6879(94)39025-8. [DOI] [PubMed] [Google Scholar]
- Lumb K. J., Cheetham J. C., Dobson C. M. 1H nuclear magnetic resonance studies of hen lysozyme-N-acetylglucosamine oligosaccharide complexes in solution. Application of chemical shifts for the comparison of conformational changes in solution and in the crystal. J Mol Biol. 1994 Jan 21;235(3):1072–1087. doi: 10.1006/jmbi.1994.1058. [DOI] [PubMed] [Google Scholar]
- McKenzie H. A., White F. H., Jr Lysozyme and alpha-lactalbumin: structure, function, and interrelationships. Adv Protein Chem. 1991;41:173–315. doi: 10.1016/s0065-3233(08)60198-9. [DOI] [PubMed] [Google Scholar]
- Nicholson L. K., Kay L. E., Baldisseri D. M., Arango J., Young P. E., Bax A., Torchia D. A. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry. 1992 Jun 16;31(23):5253–5263. doi: 10.1021/bi00138a003. [DOI] [PubMed] [Google Scholar]
- Otting G., Liepinsh E., Halle B., Frey U. NMR identification of hydrophobic cavities with low water occupancies in protein structures using small gas molecules. Nat Struct Biol. 1997 May;4(5):396–404. doi: 10.1038/nsb0597-396. [DOI] [PubMed] [Google Scholar]
- Perlman R. L., Wolff J. Dimethyl sulfoxide: an inhibitor of liver alcohol dehydrogenase. Science. 1968 Apr 19;160(3825):317–319. doi: 10.1126/science.160.3825.317. [DOI] [PubMed] [Google Scholar]
- Pike A. C., Acharya K. R. A structural basis for the interaction of urea with lysozyme. Protein Sci. 1994 Apr;3(4):706–710. doi: 10.1002/pro.5560030419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raftery M. A., Dahlquist F. W., Parsons S. M., Wolcott R. G. The use of nuclear magnetic resonance to describe relative modes of binding to lysozyme of homologous inhibitors and related substrates. Proc Natl Acad Sci U S A. 1969 Jan;62(1):44–51. doi: 10.1073/pnas.62.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajendran S., Radha C., Prakash V. Mechanism of solvent-induced thermal stabilization of alpha-amylase from Bacillus amyloliquefaciens. Int J Pept Protein Res. 1995 Feb;45(2):122–128. doi: 10.1111/j.1399-3011.1995.tb01030.x. [DOI] [PubMed] [Google Scholar]
- Rajeshwara A. N., Prakash V. Structural stability of lipase from wheat germ. Int J Pept Protein Res. 1994 Nov;44(5):435–440. doi: 10.1111/j.1399-3011.1994.tb00179.x. [DOI] [PubMed] [Google Scholar]
- Shimaki N., Ikeda K., Hamaguchi K. Interaction of urea and guanidine hydrochloride with lysozyme. J Biochem. 1971 Sep;70(3):497–508. doi: 10.1093/oxfordjournals.jbchem.a129663. [DOI] [PubMed] [Google Scholar]
- Szyperski T., Luginbühl P., Otting G., Güntert P., Wüthrich K. Protein dynamics studied by rotating frame 15N spin relaxation times. J Biomol NMR. 1993 Mar;3(2):151–164. doi: 10.1007/BF00178259. [DOI] [PubMed] [Google Scholar]
- Walter J. S., Wheeler J. S., Jr, Dunn R. B. Dynamic bulbocavernosus reflex: dyssynergia evaluation following SCI. J Am Paraplegia Soc. 1994 Jul;17(3):140–145. doi: 10.1080/01952307.1994.11735924. [DOI] [PubMed] [Google Scholar]
- Williams E. J., Herskovits T. T., Laskowski M., Jr Location of chromophoric residues in proteins by solvent perturbation. 3. Tryptophyls in lysozyme and in alpha-chymotrypsinogen and its derivatives. J Biol Chem. 1965 Sep;240(9):3574–3579. [PubMed] [Google Scholar]
- Wlodawer A., Walter J., Huber R., Sjölin L. Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. J Mol Biol. 1984 Dec 5;180(2):301–329. doi: 10.1016/s0022-2836(84)80006-6. [DOI] [PubMed] [Google Scholar]
- Yu Z. W., Quinn P. J. Dimethyl sulphoxide: a review of its applications in cell biology. Biosci Rep. 1994 Dec;14(6):259–281. doi: 10.1007/BF01199051. [DOI] [PubMed] [Google Scholar]