Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Aug;6(8):1764–1767. doi: 10.1002/pro.5560060817

An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases.

A F Neuwald 1
PMCID: PMC2143768  PMID: 9260289

Abstract

The mechanism of a membrane-bound enzyme important in phospholipid signaling, type 2 phosphatidic acid phosphatase, is suggested by sequence motifs shared with a soluble vanadium-dependent chloroperoxidase of known structure. These regions are also conserved in other soluble globular and membrane-associated proteins, including bacterial acid phosphatases, mammalian glucose-6-phosphatases, and the Drosophila developmental protein Wunen. This implies that a similar arrangement of catalytic residues specifies the active site within both soluble and membrane spanning domains.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barilà D., Plateroti M., Nobili F., Muda A. O., Xie Y., Morimoto T., Perozzi G. The Dri 42 gene, whose expression is up-regulated during epithelial differentiation, encodes a novel endoplasmic reticulum resident transmembrane protein. J Biol Chem. 1996 Nov 22;271(47):29928–29936. doi: 10.1074/jbc.271.47.29928. [DOI] [PubMed] [Google Scholar]
  2. Denu J. M., Lohse D. L., Vijayalakshmi J., Saper M. A., Dixon J. E. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2493–2498. doi: 10.1073/pnas.93.6.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dillon D. A., Wu W. I., Riedel B., Wissing J. B., Dowhan W., Carman G. M. The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem. 1996 Nov 29;271(48):30548–30553. doi: 10.1074/jbc.271.48.30548. [DOI] [PubMed] [Google Scholar]
  4. English D., Cui Y., Siddiqui R. A. Messenger functions of phosphatidic acid. Chem Phys Lipids. 1996 May 24;80(1-2):117–132. doi: 10.1016/0009-3084(96)02549-2. [DOI] [PubMed] [Google Scholar]
  5. Exton J. H. Phosphatidylcholine breakdown and signal transduction. Biochim Biophys Acta. 1994 Apr 14;1212(1):26–42. doi: 10.1016/0005-2760(94)90186-4. [DOI] [PubMed] [Google Scholar]
  6. Flores I., Casaseca T., Martinez-A C., Kanoh H., Merida I. Phosphatidic acid generation through interleukin 2 (IL-2)-induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation. J Biol Chem. 1996 Apr 26;271(17):10334–10340. doi: 10.1074/jbc.271.17.10334. [DOI] [PubMed] [Google Scholar]
  7. Hashida-Okado T., Ogawa A., Endo M., Yasumoto R., Takesako K., Kato I. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol Gen Genet. 1996 May 23;251(2):236–244. doi: 10.1007/BF02172923. [DOI] [PubMed] [Google Scholar]
  8. Kai M., Wada I., Imai S., Sakane F., Kanoh H. Identification and cDNA cloning of 35-kDa phosphatidic acid phosphatase (type 2) bound to plasma membranes. Polymerase chain reaction amplification of mouse H2O2-inducible hic53 clone yielded the cDNA encoding phosphatidic acid phosphatase. J Biol Chem. 1996 Aug 2;271(31):18931–18938. doi: 10.1074/jbc.271.31.18931. [DOI] [PubMed] [Google Scholar]
  9. Kanoh H., Kai M., Wada I. Molecular properties of enzymes involved in diacylglycerol and phosphatidate metabolism. J Lipid Mediat Cell Signal. 1996 Sep;14(1-3):245–250. doi: 10.1016/0929-7855(96)00532-9. [DOI] [PubMed] [Google Scholar]
  10. Karlin S., Altschul S. F. Applications and statistics for multiple high-scoring segments in molecular sequences. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5873–5877. doi: 10.1073/pnas.90.12.5873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kocsis M. G., Weselake R. J. Phosphatidate phosphatases of mammals, yeast, and higher plants. Lipids. 1996 Aug;31(8):785–802. doi: 10.1007/BF02522974. [DOI] [PubMed] [Google Scholar]
  12. Messerschmidt A., Wever R. X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):392–396. doi: 10.1073/pnas.93.1.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moolenaar W. H., Jalink K., van Corven E. J. Lysophosphatidic acid: a bioactive phospholipid with growth factor-like properties. Rev Physiol Biochem Pharmacol. 1992;119:47–65. doi: 10.1007/3540551921_3. [DOI] [PubMed] [Google Scholar]
  14. Moolenaar W. H. Lysophosphatidic acid signalling. Curr Opin Cell Biol. 1995 Apr;7(2):203–210. doi: 10.1016/0955-0674(95)80029-8. [DOI] [PubMed] [Google Scholar]
  15. Moolenaar W. H. Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem. 1995 Jun 2;270(22):12949–12952. doi: 10.1074/jbc.270.22.12949. [DOI] [PubMed] [Google Scholar]
  16. Neuwald A. F., Liu J. S., Lawrence C. E. Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci. 1995 Aug;4(8):1618–1632. doi: 10.1002/pro.5560040820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neuwald A. F., Liu J. S., Lipman D. J., Lawrence C. E. Extracting protein alignment models from the sequence database. Nucleic Acids Res. 1997 May 1;25(9):1665–1677. doi: 10.1093/nar/25.9.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ollis D. L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S. M., Harel M., Remington S. J., Silman I., Schrag J. The alpha/beta hydrolase fold. Protein Eng. 1992 Apr;5(3):197–211. doi: 10.1093/protein/5.3.197. [DOI] [PubMed] [Google Scholar]
  19. Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stankiewicz P. J., Tracey A. S., Crans D. C. Inhibition of phosphate-metabolizing enzymes by oxovanadium(V) complexes. Met Ions Biol Syst. 1995;31:287–324. [PubMed] [Google Scholar]
  21. Stukey J., Carman G. M. Identification of a novel phosphatase sequence motif. Protein Sci. 1997 Feb;6(2):469–472. doi: 10.1002/pro.5560060226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thaller M. C., Berlutti F., Schippa S., Lombardi G., Rossolini G. M. Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology. 1994 Jun;140(Pt 6):1341–1350. doi: 10.1099/00221287-140-6-1341. [DOI] [PubMed] [Google Scholar]
  23. Tong L., Qian C., Massariol M. J., Bonneau P. R., Cordingley M. G., Lagacé L. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature. 1996 Sep 19;383(6597):272–275. doi: 10.1038/383272a0. [DOI] [PubMed] [Google Scholar]
  24. Vilter H. Vanadium-dependent haloperoxidases. Met Ions Biol Syst. 1995;31:325–362. [PubMed] [Google Scholar]
  25. Waggoner D. W., Gómez-Muñoz A., Dewald J., Brindley D. N. Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate, lysophosphatidate, and sphingosine 1-phosphate. J Biol Chem. 1996 Jul 12;271(28):16506–16509. doi: 10.1074/jbc.271.28.16506. [DOI] [PubMed] [Google Scholar]
  26. Zhang N., Zhang J., Purcell K. J., Cheng Y., Howard K. The Drosophila protein Wunen repels migrating germ cells. Nature. 1997 Jan 2;385(6611):64–67. doi: 10.1038/385064a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES