Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Aug;6(8):1661–1681. doi: 10.1002/pro.5560060807

Bayesian statistical analysis of protein side-chain rotamer preferences.

R L Dunbrack Jr 1, F E Cohen 1
PMCID: PMC2143774  PMID: 9260279

Abstract

We present a Bayesian statistical analysis of the conformations of side chains in proteins from the Protein Data Bank. This is an extension of the backbone-dependent rotamer library, and includes rotamer populations and average chi angles for a full range of phi, psi values. The Bayesian analysis used here provides a rigorous statistical method for taking account of varying amounts of data. Bayesian statistics requires the assumption of a prior distribution for parameters over their range of possible values. This prior distribution can be derived from previous data or from pooling some of the present data. The prior distribution is combined with the data to form the posterior distribution, which is a compromise between the prior distribution and the data. For the chi 2, chi 3, and chi 4 rotamer prior distributions, we assume that the probability of each rotamer type is dependent only on the previous chi rotamer in the chain. For the backbone-dependence of the chi 1 rotamers, we derive prior distributions from the product of the phi-dependent and psi-dependent probabilities. Molecular mechanics calculations with the CHARMM22 potential show a strong similarity with the experimental distributions, indicating that proteins attain their lowest energy rotamers with respect to local backbone-side-chain interactions. The new library is suitable for use in homology modeling, protein folding simulations, and the refinement of X-ray and NMR structures.

Full Text

The Full Text of this article is available as a PDF (7.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhat T. N., Sasisekharan V., Vijayan M. An analysis of side-chain conformation in proteins. Int J Pept Protein Res. 1979 Feb;13(2):170–184. doi: 10.1111/j.1399-3011.1979.tb01866.x. [DOI] [PubMed] [Google Scholar]
  2. Bower M. J., Cohen F. E., Dunbrack R. L., Jr Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol. 1997 Apr 18;267(5):1268–1282. doi: 10.1006/jmbi.1997.0926. [DOI] [PubMed] [Google Scholar]
  3. Bromberg S., Dill K. A. Side-chain entropy and packing in proteins. Protein Sci. 1994 Jul;3(7):997–1009. doi: 10.1002/pro.5560030702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandrasekaran R., Ramachandran G. N. Studies on the conformation of amino acids. XI. Analysis of the observed side group conformation in proteins. Int J Protein Res. 1970;2(4):223–233. [PubMed] [Google Scholar]
  5. Cody V., Duax W. L., Hauptman H. Conformational analysis of aromatic amino acids by x-ray crystallography. Int J Pept Protein Res. 1973;5(5):297–308. doi: 10.1111/j.1399-3011.1973.tb02334.x. [DOI] [PubMed] [Google Scholar]
  6. Dill K. A., Bromberg S., Yue K., Fiebig K. M., Yee D. P., Thomas P. D., Chan H. S. Principles of protein folding--a perspective from simple exact models. Protein Sci. 1995 Apr;4(4):561–602. doi: 10.1002/pro.5560040401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunbrack R. L., Jr, Karplus M. Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nat Struct Biol. 1994 May;1(5):334–340. doi: 10.1038/nsb0594-334. [DOI] [PubMed] [Google Scholar]
  8. Gelin B. R., Karplus M. Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. Biochemistry. 1979 Apr 3;18(7):1256–1268. doi: 10.1021/bi00574a022. [DOI] [PubMed] [Google Scholar]
  9. Heringa J., Sommerfeldt H., Higgins D., Argos P. OBSTRUCT: a program to obtain largest cliques from a protein sequence set according to structural resolution and sequence similarity. Comput Appl Biosci. 1992 Dec;8(6):599–600. doi: 10.1093/bioinformatics/8.6.599. [DOI] [PubMed] [Google Scholar]
  10. James M. N., Sielecki A. R. Structure and refinement of penicillopepsin at 1.8 A resolution. J Mol Biol. 1983 Jan 15;163(2):299–361. doi: 10.1016/0022-2836(83)90008-6. [DOI] [PubMed] [Google Scholar]
  11. Janin J., Wodak S. Conformation of amino acid side-chains in proteins. J Mol Biol. 1978 Nov 5;125(3):357–386. doi: 10.1016/0022-2836(78)90408-4. [DOI] [PubMed] [Google Scholar]
  12. Kuszewski J., Gronenborn A. M., Clore G. M. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci. 1996 Jun;5(6):1067–1080. doi: 10.1002/pro.5560050609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levitt M. Accurate modeling of protein conformation by automatic segment matching. J Mol Biol. 1992 Jul 20;226(2):507–533. doi: 10.1016/0022-2836(92)90964-l. [DOI] [PubMed] [Google Scholar]
  14. McGregor M. J., Islam S. A., Sternberg M. J. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol. 1987 Nov 20;198(2):295–310. doi: 10.1016/0022-2836(87)90314-7. [DOI] [PubMed] [Google Scholar]
  15. Moult J., James M. N. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins. 1986 Oct;1(2):146–163. doi: 10.1002/prot.340010207. [DOI] [PubMed] [Google Scholar]
  16. Nayeem A., Scheraga H. A. A statistical analysis of side-chain conformations in proteins: comparison with ECEPP predictions. J Protein Chem. 1994 Apr;13(3):283–296. doi: 10.1007/BF01901561. [DOI] [PubMed] [Google Scholar]
  17. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  18. Ponnuswamy P. K., Sasisekharan V. Studies on the conformation of amino acids. IX. Conformations of butyl, seryl, threonyl, cystennyl, and valyl residues in a dipeptide unit. Biopolymers. 1971;10(3):565–582. doi: 10.1002/bip.360100311. [DOI] [PubMed] [Google Scholar]
  19. Pullman B., Pullman A. Molecular orbital calculations on the conformation of amino acid residues of proteins. Adv Protein Chem. 1974;28:347–526. doi: 10.1016/s0065-3233(08)60233-8. [DOI] [PubMed] [Google Scholar]
  20. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  21. Sasisekharan V., Ponnuswamy P. K. Studies on the conformation of amino acids. X. Conformations of norvalyl, leucyl and aromatic side groups in a dipeptide unit. Biopolymers. 1971;10(3):583–592. doi: 10.1002/bip.360100312. [DOI] [PubMed] [Google Scholar]
  22. Schrauber H., Eisenhaber F., Argos P. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J Mol Biol. 1993 Mar 20;230(2):592–612. doi: 10.1006/jmbi.1993.1172. [DOI] [PubMed] [Google Scholar]
  23. Sippl M. J. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990 Jun 20;213(4):859–883. doi: 10.1016/s0022-2836(05)80269-4. [DOI] [PubMed] [Google Scholar]
  24. Tuffery P., Etchebest C., Hazout S., Lavery R. A new approach to the rapid determination of protein side chain conformations. J Biomol Struct Dyn. 1991 Jun;8(6):1267–1289. doi: 10.1080/07391102.1991.10507882. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES