Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Sep;6(9):1878–1884. doi: 10.1002/pro.5560060908

Solution structure of drosomycin, the first inducible antifungal protein from insects.

C Landon 1, P Sodano 1, C Hetru 1, J Hoffmann 1, M Ptak 1
PMCID: PMC2143780  PMID: 9300487

Abstract

Drosomycin is the first antifungal protein characterized recently among the broad family of inducible peptides and proteins produced by insects to respond to bacterial or septic injuries. It is a small protein of 44 amino acid residues extracted from Drosophila melanogaster that exhibits a potent activity against filamentous fungi. Its three-dimensional structure in aqueous solution was determined using 1H 2D NMR. This structure, involving an alpha-helix and a twisted three-stranded beta-sheet, is stabilized by three disulfide bridges. The corresponding Cysteine Stabilized alpha beta (CS alpha beta) motif, which was found in other defense proteins such as the antibacterial insect defensin A, short- and long-chain scorpion toxins, as well as in plant thionins and potent antifungal plant defensins, appears as remarkably persistent along evolution.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bontems F., Roumestand C., Boyot P., Gilquin B., Doljansky Y., Menez A., Toma F. Three-dimensional structure of natural charybdotoxin in aqueous solution by 1H-NMR. Charybdotoxin possesses a structural motif found in other scorpion toxins. Eur J Biochem. 1991 Feb 26;196(1):19–28. doi: 10.1111/j.1432-1033.1991.tb15780.x. [DOI] [PubMed] [Google Scholar]
  2. Broekaert W. F., Terras F. R., Cammue B. P., Osborn R. W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995 Aug;108(4):1353–1358. doi: 10.1104/pp.108.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruix M., González C., Santoro J., Soriano F., Rocher A., Méndez E., Rico M. 1H-nmr studies on the structure of a new thionin from barley endosperm. Biopolymers. 1995 Dec;36(6):751–763. doi: 10.1002/bip.360360608. [DOI] [PubMed] [Google Scholar]
  4. Bruix M., Jiménez M. A., Santoro J., González C., Colilla F. J., Méndez E., Rico M. Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. Biochemistry. 1993 Jan 19;32(2):715–724. doi: 10.1021/bi00053a041. [DOI] [PubMed] [Google Scholar]
  5. Cornet B., Bonmatin J. M., Hetru C., Hoffmann J. A., Ptak M., Vovelle F. Refined three-dimensional solution structure of insect defensin A. Structure. 1995 May 15;3(5):435–448. doi: 10.1016/s0969-2126(01)00177-0. [DOI] [PubMed] [Google Scholar]
  6. Dauplais M., Gilquin B., Possani L. D., Gurrola-Briones G., Roumestand C., Ménez A. Determination of the three-dimensional solution structure of noxiustoxin: analysis of structural differences with related short-chain scorpion toxins. Biochemistry. 1995 Dec 26;34(51):16563–16573. doi: 10.1021/bi00051a004. [DOI] [PubMed] [Google Scholar]
  7. Efimov A. V. Standartnye konformatsii polipeptidnoi tsepi v nereguliarnykh uchastkakh belkov. Mol Biol (Mosk) 1986 Jan-Feb;20(1):250–260. [PubMed] [Google Scholar]
  8. Fehlbaum P., Bulet P., Chernysh S., Briand J. P., Roussel J. P., Letellier L., Hetru C., Hoffmann J. A. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1221–1225. doi: 10.1073/pnas.93.3.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fehlbaum P., Bulet P., Michaut L., Lagueux M., Broekaert W. F., Hetru C., Hoffmann J. A. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem. 1994 Dec 30;269(52):33159–33163. [PubMed] [Google Scholar]
  10. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  11. Güntert P., Wüthrich K. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991 Nov;1(4):447–456. doi: 10.1007/BF02192866. [DOI] [PubMed] [Google Scholar]
  12. Heiden W., Moeckel G., Brickmann J. A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J Comput Aided Mol Des. 1993 Oct;7(5):503–514. doi: 10.1007/BF00124359. [DOI] [PubMed] [Google Scholar]
  13. Hoffmann J. A., Hetru C. Insect defensins: inducible antibacterial peptides. Immunol Today. 1992 Oct;13(10):411–415. doi: 10.1016/0167-5699(92)90092-L. [DOI] [PubMed] [Google Scholar]
  14. Lambert J., Keppi E., Dimarcq J. L., Wicker C., Reichhart J. M., Dunbar B., Lepage P., Van Dorsselaer A., Hoffmann J., Fothergill J. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci U S A. 1989 Jan;86(1):262–266. doi: 10.1073/pnas.86.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Landon C., Cornet B., Bonmatin J. M., Kopeyan C., Rochat H., Vovelle F., Ptak M. 1H-NMR-derived secondary structure and the overall fold of the potent anti-mammal and anti-insect toxin III from the scorpion Leiurus quinquestriatus quinquestriatus. Eur J Biochem. 1996 Mar 1;236(2):395–404. doi: 10.1111/j.1432-1033.1996.00395.x. [DOI] [PubMed] [Google Scholar]
  16. Lemaitre B., Kromer-Metzger E., Michaut L., Nicolas E., Meister M., Georgel P., Reichhart J. M., Hoffmann J. A. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9465–9469. doi: 10.1073/pnas.92.21.9465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levashina E. A., Ohresser S., Bulet P., Reichhart J. M., Hetru C., Hoffmann J. A. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem. 1995 Oct 15;233(2):694–700. doi: 10.1111/j.1432-1033.1995.694_2.x. [DOI] [PubMed] [Google Scholar]
  18. Michaut L., Fehlbaum P., Moniatte M., Van Dorsselaer A., Reichhart J. M., Bulet P. Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett. 1996 Oct 14;395(1):6–10. doi: 10.1016/0014-5793(96)00992-1. [DOI] [PubMed] [Google Scholar]
  19. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  20. Nitti G., Orrù S., Bloch C., Jr, Morhy L., Marino G., Pucci P. Amino acid sequence and disulphide-bridge pattern of three gamma-thionins from Sorghum bicolor. Eur J Biochem. 1995 Mar 1;228(2):250–256. [PubMed] [Google Scholar]
  21. Nolde D. E., Sobol A. G., Pluzhnikov K. A., Grishin E. V., Arseniev A. S. Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom. J Biomol NMR. 1995 Jan;5(1):1–13. doi: 10.1007/BF00227465. [DOI] [PubMed] [Google Scholar]
  22. Sibanda B. L., Blundell T. L., Thornton J. M. Conformation of beta-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol. 1989 Apr 20;206(4):759–777. doi: 10.1016/0022-2836(89)90583-4. [DOI] [PubMed] [Google Scholar]
  23. Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248. doi: 10.1038/292246a0. [DOI] [PubMed] [Google Scholar]
  24. Terras F. R., Schoofs H. M., De Bolle M. F., Van Leuven F., Rees S. B., Vanderleyden J., Cammue B. P., Broekaert W. F. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem. 1992 Aug 5;267(22):15301–15309. [PubMed] [Google Scholar]
  25. Terras F. R., Torrekens S., Van Leuven F., Osborn R. W., Vanderleyden J., Cammue B. P., Broekaert W. F. A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett. 1993 Feb 1;316(3):233–240. doi: 10.1016/0014-5793(93)81299-f. [DOI] [PubMed] [Google Scholar]
  26. Vita C., Roumestand C., Toma F., Ménez A. Scorpion toxins as natural scaffolds for protein engineering. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6404–6408. doi: 10.1073/pnas.92.14.6404. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES