Abstract
The surface topology of the Minibody, a small de novo-designed beta-protein, has been probed by a strategy that combines selective chemical modification with a variety of reagents and mass spectrometric analysis of the modified fragments. Under appropriate conditions, the susceptibility of individual residues primarily depends on their surface accessibility so that their relative reactivities can be correlated with their position in the tertiary structure of the protein. Moreover, this approach provides information on interacting residues, since intramolecular interactions might greatly affect the reactivity of individual side chains by altering their pKa values. The results of this study indicate that, while overall the Minibody model is correct, the beta-sheet formed by the N- and C-terminal segments is most likely distorted. This is also in agreement with previous results that were obtained using a similar approach where mass spectrometry was used to identify Minibody fragments from limited proteolysis (Zappacosta F, Pessi A, Bianchi E, Venturini S, Sollazzo M, Tramontano A. Marino G, Pucci P. 1996. Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: The case of Minibody. Protein Sci 5:802-813). The chemical modification approach, in combination with limited proteolysis procedures, can provide useful, albeit partial, structural information to complement simulation techniques. This is especially valuable when, as in the Minibody case, an NMR and/or X-ray structure cannot be obtained due to insufficient solubility of the molecule.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bianchi E., Sollazzo M., Tramontano A., Pessi A. Chemical synthesis of a designed beta-protein through the flow-polyamide method. Int J Pept Protein Res. 1993 Apr;41(4):385–393. doi: 10.1111/j.1399-3011.1993.tb00454.x. [DOI] [PubMed] [Google Scholar]
- Cuatrecasas P., Fuchs S., Anfinsen C. B. The tyrosyl residues at the active site of staphylococcal nuclease. Modifications by tetranitromethane. J Biol Chem. 1968 Sep 25;243(18):4787–4798. [PubMed] [Google Scholar]
- Glocker M. O., Borchers C., Fiedler W., Suckau D., Przybylski M. Molecular characterization of surface topology in protein tertiary structures by amino-acylation and mass spectrometric peptide mapping. Bioconjug Chem. 1994 Nov-Dec;5(6):583–590. doi: 10.1021/bc00030a014. [DOI] [PubMed] [Google Scholar]
- Hsu Y. R., Narhi L. O., Spahr C., Langley K. E., Lu H. S. In vitro methionine oxidation of Escherichia coli-derived human stem cell factor: effects on the molecular structure, biological activity, and dimerization. Protein Sci. 1996 Jun;5(6):1165–1173. doi: 10.1002/pro.5560050619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loo J. A., Edmonds C. G., Smith R. D. Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry. Science. 1990 Apr 13;248(4952):201–204. doi: 10.1126/science.2326633. [DOI] [PubMed] [Google Scholar]
- Martin F., Toniatti C., Salvati A. L., Ciliberto G., Cortese R., Sollazzo M. Coupling protein design and in vitro selection strategies: improving specificity and affinity of a designed beta-protein IL-6 antagonist. J Mol Biol. 1996 Jan 12;255(1):86–97. doi: 10.1006/jmbi.1996.0008. [DOI] [PubMed] [Google Scholar]
- Martin F., Toniatti C., Salvati A. L., Venturini S., Ciliberto G., Cortese R., Sollazzo M. The affinity-selection of a minibody polypeptide inhibitor of human interleukin-6. EMBO J. 1994 Nov 15;13(22):5303–5309. doi: 10.1002/j.1460-2075.1994.tb06864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohguro H., Palczewski K., Walsh K. A., Johnson R. S. Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Sci. 1994 Dec;3(12):2428–2434. doi: 10.1002/pro.5560031226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pessi A., Bianchi E., Crameri A., Venturini S., Tramontano A., Sollazzo M. A designed metal-binding protein with a novel fold. Nature. 1993 Mar 25;362(6418):367–369. doi: 10.1038/362367a0. [DOI] [PubMed] [Google Scholar]
- Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
- Steiner R. F., Albaugh S., Fenselau C., Murphy C., Vestling M. A mass spectrometry method for mapping the interface topography of interacting proteins, illustrated by the melittin-calmodulin system. Anal Biochem. 1991 Jul;196(1):120–125. doi: 10.1016/0003-2697(91)90127-f. [DOI] [PubMed] [Google Scholar]
- Suckau D., Mak M., Przybylski M. Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5630–5634. doi: 10.1073/pnas.89.12.5630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zappacosta F., Pessi A., Bianchi E., Venturini S., Sollazzo M., Tramontano A., Marino G., Pucci P. Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: the case of Minibody. Protein Sci. 1996 May;5(5):802–813. doi: 10.1002/pro.5560050502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zappacosta F., Sannia G., Savoy L. A., Marino G., Pucci P. Post-translational modifications in aspartate aminotransferase from Sulfolobus solfataricus. Detection of N-epsilon-methyllysines by mass spectrometry. Eur J Biochem. 1994 Jun 15;222(3):761–767. doi: 10.1111/j.1432-1033.1994.tb18922.x. [DOI] [PubMed] [Google Scholar]