Abstract
The general similarity in the forces governing protein folding and protein-protein associations has led us to examine the similarity in the architectural motifs between the interfaces and the monomers. We have carried out extensive, all-against-all structural comparisons between the single-chain protein structural dataset and the interface dataset, derived both from all protein-protein complexes in the structural database and from interfaces generated via an automated crystal symmetry operation. We show that despite the absence of chain connections, the global features of the architectural motifs, present in monomers, recur in the interfaces, a reflection of the limited set of the folding patterns. However, although similarity has been observed, the details of the architectural motifs vary. In particular, the extent of the similarity correlates with the consideration of how the interface has been formed. Interfaces derived from two-state model complexes, where the chains fold cooperatively, display a considerable similarity to architectures in protein cores, as judged by the quality of their geometric superposition. On the other hand, the three-state model interfaces, representing binding of already folded molecules, manifest a larger variability and resemble the monomer architecture only in general outline. The origin of the difference between the monomers and the three-state model interfaces can be understood in terms of the different nature of the folding and the binding that are involved. Whereas in the former all degrees of freedom are available to the backbone to maximize favorable interactions, in rigid body, three-state model binding, only six degrees of freedom are allowed. Hence, residue or atom pair-wise potentials derived from protein-protein associations are expected to be less accurate, substantially increasing the number of computationally acceptable alternate binding modes (Finkelstein et al., 1995).
Full Text
The Full Text of this article is available as a PDF (7.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexandrov N. N., Go N. Biological meaning, statistical significance, and classification of local spatial similarities in nonhomologous proteins. Protein Sci. 1994 Jun;3(6):866–875. doi: 10.1002/pro.5560030601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachar O., Fischer D., Nussinov R., Wolfson H. A computer vision based technique for 3-D sequence-independent structural comparison of proteins. Protein Eng. 1993 Apr;6(3):279–288. doi: 10.1093/protein/6.3.279. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Bowie J. U., Reidhaar-Olson J. F., Lim W. A., Sauer R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science. 1990 Mar 16;247(4948):1306–1310. doi: 10.1126/science.2315699. [DOI] [PubMed] [Google Scholar]
- Crippen G. M., Maiorov V. N. How many protein folding motifs are there? J Mol Biol. 1995 Sep 8;252(1):144–151. doi: 10.1006/jmbi.1995.0481. [DOI] [PubMed] [Google Scholar]
- Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
- Fenderson F. F., Kumar S., Adman E. T., Liu M. Y., Payne W. J., LeGall J. Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes. Biochemistry. 1991 Jul 23;30(29):7180–7185. doi: 10.1021/bi00243a020. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Badretdinov AYa, Gutin A. M. Why do protein architectures have Boltzmann-like statistics? Proteins. 1995 Oct;23(2):142–150. doi: 10.1002/prot.340230204. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Ptitsyn O. B. Why do globular proteins fit the limited set of folding patterns? Prog Biophys Mol Biol. 1987;50(3):171–190. doi: 10.1016/0079-6107(87)90013-7. [DOI] [PubMed] [Google Scholar]
- Fischer D., Tsai C. J., Nussinov R., Wolfson H. A 3D sequence-independent representation of the protein data bank. Protein Eng. 1995 Oct;8(10):981–997. doi: 10.1093/protein/8.10.981. [DOI] [PubMed] [Google Scholar]
- Fischer D., Wolfson H., Lin S. L., Nussinov R. Three-dimensional, sequence order-independent structural comparison of a serine protease against the crystallographic database reveals active site similarities: potential implications to evolution and to protein folding. Protein Sci. 1994 May;3(5):769–778. doi: 10.1002/pro.5560030506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
- Grindley H. M., Artymiuk P. J., Rice D. W., Willett P. Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm. J Mol Biol. 1993 Feb 5;229(3):707–721. doi: 10.1006/jmbi.1993.1074. [DOI] [PubMed] [Google Scholar]
- Harris N. L., Presnell S. R., Cohen F. E. Four helix bundle diversity in globular proteins. J Mol Biol. 1994 Mar 11;236(5):1356–1368. doi: 10.1016/0022-2836(94)90063-9. [DOI] [PubMed] [Google Scholar]
- Holm L., Sander C. The FSSP database of structurally aligned protein fold families. Nucleic Acids Res. 1994 Sep;22(17):3600–3609. [PMC free article] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Lesk A. M., Chothia C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol. 1980 Jan 25;136(3):225–270. doi: 10.1016/0022-2836(80)90373-3. [DOI] [PubMed] [Google Scholar]
- Levitt M., Chothia C. Structural patterns in globular proteins. Nature. 1976 Jun 17;261(5561):552–558. doi: 10.1038/261552a0. [DOI] [PubMed] [Google Scholar]
- Lin S. L., Tsai C. J., Nussinov R. A study of four-helix bundles: investigating protein folding via similar architectural motifs in protein cores and in subunit interfaces. J Mol Biol. 1995 Apr 21;248(1):151–161. doi: 10.1006/jmbi.1995.0208. [DOI] [PubMed] [Google Scholar]
- Messerschmidt A., Ladenstein R., Huber R., Bolognesi M., Avigliano L., Petruzzelli R., Rossi A., Finazzi-Agró A. Refined crystal structure of ascorbate oxidase at 1.9 A resolution. J Mol Biol. 1992 Mar 5;224(1):179–205. doi: 10.1016/0022-2836(92)90583-6. [DOI] [PubMed] [Google Scholar]
- Miller S., Janin J., Lesk A. M., Chothia C. Interior and surface of monomeric proteins. J Mol Biol. 1987 Aug 5;196(3):641–656. doi: 10.1016/0022-2836(87)90038-6. [DOI] [PubMed] [Google Scholar]
- Miller S. The structure of interfaces between subunits of dimeric and tetrameric proteins. Protein Eng. 1989 Nov;3(2):77–83. doi: 10.1093/protein/3.2.77. [DOI] [PubMed] [Google Scholar]
- Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
- Nussinov R., Wolfson H. J. Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10495–10499. doi: 10.1073/pnas.88.23.10495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orengo C. A., Flores T. P., Taylor W. R., Thornton J. M. Identification and classification of protein fold families. Protein Eng. 1993 Jul;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. beta-Sheet topology and the relatedness of proteins. Nature. 1977 Aug 11;268(5620):495–500. doi: 10.1038/268495a0. [DOI] [PubMed] [Google Scholar]
- Shortle D., Wang Y., Gillespie J. R., Wrabl J. O. Protein folding for realists: a timeless phenomenon. Protein Sci. 1996 Jun;5(6):991–1000. doi: 10.1002/pro.5560050602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shrake A., Rupley J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol. 1973 Sep 15;79(2):351–371. doi: 10.1016/0022-2836(73)90011-9. [DOI] [PubMed] [Google Scholar]
- Slingsby C., Bateman O. A., Simpson A. Motifs involved in protein-protein interactions. Mol Biol Rep. 1993 Apr;17(3):185–195. doi: 10.1007/BF00986727. [DOI] [PubMed] [Google Scholar]
- Steif C., Weber P., Hinz H. J., Flossdorf J., Cesareni G., Kokkinidis M. Subunit interactions provide a significant contribution to the stability of the dimeric four-alpha-helical-bundle protein ROP. Biochemistry. 1993 Apr 20;32(15):3867–3876. doi: 10.1021/bi00066a005. [DOI] [PubMed] [Google Scholar]
- Tsai C. J., Nussinov R. Hydrophobic folding units derived from dissimilar monomer structures and their interactions. Protein Sci. 1997 Jan;6(1):24–42. doi: 10.1002/pro.5560060104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z. X. How many fold types of protein are there in nature? Proteins. 1996 Oct;26(2):186–191. doi: 10.1002/(SICI)1097-0134(199610)26:2<186::AID-PROT8>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- Xu D., Lin S. L., Nussinov R. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations. J Mol Biol. 1997 Jan 10;265(1):68–84. doi: 10.1006/jmbi.1996.0712. [DOI] [PubMed] [Google Scholar]