Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1997 Sep;6(9):2016–2027. doi: 10.1002/pro.5560060922

The effect of Arg306-->Ala and Arg506-->Gln substitutions in the inactivation of recombinant human factor Va by activated protein C and protein S.

J O Egan 1, M Kalafatis 1, K G Mann 1
PMCID: PMC2143790  PMID: 9300501

Abstract

Factor Va (fVa) is inactivated by activated protein C (APC) by cleavage of the heavy chain at Arg306, Arg506, and Arg679. Site-directed mutagenesis of human factor V cDNA was used to substitute Arg306-->Ala (rfVa306A) and Arg506-->Gln (rfVa506Q). Both the single and double mutants (rfVa306A/506Q) were constructed. The activation of these procofactors by alpha-thrombin and their inactivation by APC were assessed in coagulation assays using factor V-deficient plasma. All recombinant and wild-type proteins had similar initial cofactor activity and identical activation products (a factor Va molecule composed of light and heavy chains). Inactivation of factor Va purified from human plasma (fVaPLASMA) in HBS Ca2+ +0.5% BSA or in conditioned media by APC in the presence of phospholipid vesicles resulted in identical inactivation profiles and displayed identical cleavage patterns. Recombinant wild-type factor Va (rfVaWT) was inactivated by APC in the presence of phospholipid vesicles at an overall rate slower than fVaPLASMA. The rfVa306A and rfVa506Q mutants were each inactivated at rates slower than rfVaWT and fVaPLASMA. Following a 90-min incubation with APC, rfVa306A and rfVa506Q retain approximately 30-40% of the initial cofactor activity. The double mutant, rfVa306A/506Q, was completely resistant to cleavage and inactivation by APC retaining 100% of the initial cofactor activity following a 90-min incubation in the presence of APC. Recombinant fVaWT, rfVa306A, rfVa506Q, and rfVa306A/506Q were also used to evaluate the effect of protein S on the individual cleavage sites of the cofactor by APC. The initial rates of rfVaWT and rfVa306A inactivation in the presence of protein S were unchanged, indicating cleavage at Arg506 is not affected by protein S. The initial rate of rfVa506Q inactivation was increased, suggesting protein S slightly accelerates the cleavage at Arg306. Overall, the data demonstrate high specificity with respect to cleavage sites for APC on factor Va and demonstrate that cleavages of the cofactor at both Arg306 and Arg506 are required for efficient factor Va inactivation.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aparicio C., Dahlbäck B. Molecular mechanisms of activated protein C resistance. Properties of factor V isolated from an individual with homozygosity for the Arg506 to Gln mutation in the factor V gene. Biochem J. 1996 Jan 15;313(Pt 2):467–472. doi: 10.1042/bj3130467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bajaj S. P., Mann K. G. Simultaneous purification of bovine prothrombin and factor X. Activation of prothrombin by trypsin-activated factor X. J Biol Chem. 1973 Nov 25;248(22):7729–7741. [PubMed] [Google Scholar]
  3. Bertina R. M., Koeleman B. P., Koster T., Rosendaal F. R., Dirven R. J., de Ronde H., van der Velden P. A., Reitsma P. H. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994 May 5;369(6475):64–67. doi: 10.1038/369064a0. [DOI] [PubMed] [Google Scholar]
  4. Bruin T., Sturk A., ten Cate J. W., Cath M. The function of the human factor V carbohydrate moiety in blood coagulation. Eur J Biochem. 1987 Dec 30;170(1-2):305–310. doi: 10.1111/j.1432-1033.1987.tb13700.x. [DOI] [PubMed] [Google Scholar]
  5. Dahlbäck B., Carlsson M., Svensson P. J. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1004–1008. doi: 10.1073/pnas.90.3.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dahlbäck B. Purification of human vitamin K-dependent protein S and its limited proteolysis by thrombin. Biochem J. 1983 Mar 1;209(3):837–846. doi: 10.1042/bj2090837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Esmon C. T. The subunit structure of thrombin-activated factor V. Isolation of activated factor V, separation of subunits, and reconstitution of biological activity. J Biol Chem. 1979 Feb 10;254(3):964–973. [PubMed] [Google Scholar]
  8. Esmon N. L., Owen W. G., Esmon C. T. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem. 1982 Jan 25;257(2):859–864. [PubMed] [Google Scholar]
  9. Fay P. J., Haidaris P. J., Smudzin T. M. Human factor VIIIa subunit structure. Reconstruction of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. J Biol Chem. 1991 May 15;266(14):8957–8962. [PubMed] [Google Scholar]
  10. Heeb M. J., Kojima Y., Greengard J. S., Griffin J. H. Activated protein C resistance: molecular mechanisms based on studies using purified Gln506-factor V. Blood. 1995 Jun 15;85(12):3405–3411. [PubMed] [Google Scholar]
  11. Jenny R. J., Pittman D. D., Toole J. J., Kriz R. W., Aldape R. A., Hewick R. M., Kaufman R. J., Mann K. G. Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4846–4850. doi: 10.1073/pnas.84.14.4846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kalafatis M., Haley P. E., Lu D., Bertina R. M., Long G. L., Mann K. G. Proteolytic events that regulate factor V activity in whole plasma from normal and activated protein C (APC)-resistant individuals during clotting: an insight into the APC-resistance assay. Blood. 1996 Jun 1;87(11):4695–4707. [PubMed] [Google Scholar]
  13. Kalafatis M., Lu D., Bertina R. M., Long G. L., Mann K. G. Biochemical prototype for familial thrombosis. A study combining a functional protein C mutation and factor V Leiden. Arterioscler Thromb Vasc Biol. 1995 Dec;15(12):2181–2187. doi: 10.1161/01.atv.15.12.2181. [DOI] [PubMed] [Google Scholar]
  14. Kalafatis M., Mann K. G. Factor VLeiden and thrombophilia. Arterioscler Thromb Vasc Biol. 1997 Apr;17(4):620–627. doi: 10.1161/01.atv.17.4.620. [DOI] [PubMed] [Google Scholar]
  15. Kalafatis M., Mann K. G. Role of the membrane in the inactivation of factor Va by activated protein C. J Biol Chem. 1993 Dec 25;268(36):27246–27257. [PubMed] [Google Scholar]
  16. Kalafatis M., Rand M. D., Jenny R. J., Ehrlich Y. H., Mann K. G. Phosphorylation of factor Va and factor VIIIa by activated platelets. Blood. 1993 Feb 1;81(3):704–719. [PubMed] [Google Scholar]
  17. Kalafatis M., Rand M. D., Mann K. G. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J Biol Chem. 1994 Dec 16;269(50):31869–31880. [PubMed] [Google Scholar]
  18. Kane W. H., Davie E. W. Cloning of a cDNA coding for human factor V, a blood coagulation factor homologous to factor VIII and ceruloplasmin. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6800–6804. doi: 10.1073/pnas.83.18.6800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kane W. H., Devore-Carter D., Ortel T. L. Expression and characterization of recombinant human factor V and a mutant lacking a major portion of the connecting region. Biochemistry. 1990 Jul 24;29(29):6762–6768. doi: 10.1021/bi00481a003. [DOI] [PubMed] [Google Scholar]
  20. Kaufman R. J., Davies M. V., Wasley L. C., Michnick D. Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus. Nucleic Acids Res. 1991 Aug 25;19(16):4485–4490. doi: 10.1093/nar/19.16.4485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kisiel W. Human plasma protein C: isolation, characterization, and mechanism of activation by alpha-thrombin. J Clin Invest. 1979 Sep;64(3):761–769. doi: 10.1172/JCI109521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krishnaswamy S., Russell G. D., Mann K. G. The reassociation of factor Va from its isolated subunits. J Biol Chem. 1989 Feb 25;264(6):3160–3168. [PubMed] [Google Scholar]
  23. Krishnaswamy S., Williams E. B., Mann K. G. The binding of activated protein C to factors V and Va. J Biol Chem. 1986 Jul 25;261(21):9684–9693. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Lollar P., Parker C. G. pH-dependent denaturation of thrombin-activated porcine factor VIII. J Biol Chem. 1990 Jan 25;265(3):1688–1692. [PubMed] [Google Scholar]
  26. Lu D., Kalafatis M., Mann K. G., Long G. L. Comparison of activated protein C/protein S-mediated inactivation of human factor VIII and factor V. Blood. 1996 Jun 1;87(11):4708–4717. [PubMed] [Google Scholar]
  27. Lu D., Kalafatis M., Mann K. G., Long G. L. Loss of membrane-dependent factor Va cleavage: a mechanistic interpretation of the pathology of protein CVermont. Blood. 1994 Aug 1;84(3):687–690. [PubMed] [Google Scholar]
  28. Lundblad R. L., Kingdon H. S., Mann K. G. Thrombin. Methods Enzymol. 1976;45:156–176. doi: 10.1016/s0076-6879(76)45017-6. [DOI] [PubMed] [Google Scholar]
  29. Mann K. G., Fish W. W. Protein polypeptide chain molecular weights by gel chromatography in guanidinium chloride. Methods Enzymol. 1972;26:28–42. doi: 10.1016/s0076-6879(72)26004-9. [DOI] [PubMed] [Google Scholar]
  30. Mann K. G., Jenny R. J., Krishnaswamy S. Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem. 1988;57:915–956. doi: 10.1146/annurev.bi.57.070188.004411. [DOI] [PubMed] [Google Scholar]
  31. Mann K. G., Nesheim M. E., Church W. R., Haley P., Krishnaswamy S. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 1990 Jul 1;76(1):1–16. [PubMed] [Google Scholar]
  32. Murray J. M., Rand M. D., Egan J. O., Murphy S., Kim H. C., Mann K. G. Factor VNew Brunswick: Ala221-to-Val substitution results in reduced cofactor activity. Blood. 1995 Sep 1;86(5):1820–1827. [PubMed] [Google Scholar]
  33. Nelson R. M., Long G. L. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem. 1989 Jul;180(1):147–151. doi: 10.1016/0003-2697(89)90103-6. [DOI] [PubMed] [Google Scholar]
  34. Nesheim M. E., Canfield W. M., Kisiel W., Mann K. G. Studies of the capacity of factor Xa to protect factor Va from inactivation by activated protein C. J Biol Chem. 1982 Feb 10;257(3):1443–1447. [PubMed] [Google Scholar]
  35. Nesheim M. E., Taswell J. B., Mann K. G. The contribution of bovine Factor V and Factor Va to the activity of prothrombinase. J Biol Chem. 1979 Nov 10;254(21):10952–10962. [PubMed] [Google Scholar]
  36. Odegaard B., Mann K. Proteolysis of factor Va by factor Xa and activated protein C. J Biol Chem. 1987 Aug 15;262(23):11233–11238. [PubMed] [Google Scholar]
  37. Pittman D. D., Tomkinson K. N., Kaufman R. J. Post-translational requirements for functional factor V and factor VIII secretion in mammalian cells. J Biol Chem. 1994 Jun 24;269(25):17329–17337. [PubMed] [Google Scholar]
  38. Rand M. D., Kalafatis M., Mann K. G. Platelet coagulation factor Va: the major secretory platelet phosphoprotein. Blood. 1994 Apr 15;83(8):2180–2190. [PubMed] [Google Scholar]
  39. Rand M. D., Lock J. B., van't Veer C., Gaffney D. P., Mann K. G. Blood clotting in minimally altered whole blood. Blood. 1996 Nov 1;88(9):3432–3445. [PubMed] [Google Scholar]
  40. Rosendaal F. R., Koster T., Vandenbroucke J. P., Reitsma P. H. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance) Blood. 1995 Mar 15;85(6):1504–1508. [PubMed] [Google Scholar]
  41. Rosing J., Hoekema L., Nicolaes G. A., Thomassen M. C., Hemker H. C., Varadi K., Schwarz H. P., Tans G. Effects of protein S and factor Xa on peptide bond cleavages during inactivation of factor Va and factor VaR506Q by activated protein C. J Biol Chem. 1995 Nov 17;270(46):27852–27858. doi: 10.1074/jbc.270.46.27852. [DOI] [PubMed] [Google Scholar]
  42. Solymoss S., Tucker M. M., Tracy P. B. Kinetics of inactivation of membrane-bound factor Va by activated protein C. Protein S modulates factor Xa protection. J Biol Chem. 1988 Oct 15;263(29):14884–14890. [PubMed] [Google Scholar]
  43. Suzuki K., Stenflo J., Dahlbäck B., Teodorsson B. Inactivation of human coagulation factor V by activated protein C. J Biol Chem. 1983 Feb 10;258(3):1914–1920. [PubMed] [Google Scholar]
  44. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Urlaub G., Chasin L. A. Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Walker F. J. Regulation of activated protein C by protein S. The role of phospholipid in factor Va inactivation. J Biol Chem. 1981 Nov 10;256(21):11128–11131. [PubMed] [Google Scholar]
  47. Williams E. B., Krishnaswamy S., Mann K. G. Zymogen/enzyme discrimination using peptide chloromethyl ketones. J Biol Chem. 1989 May 5;264(13):7536–7545. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES