Abstract
The crystal structures of the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) complexed to bovine chymotrypsin (C-APPI) and trypsin (T-APPI) and basic pancreatic trypsin inhibitor (BPTI) bound to chymotrypsin (C-BPTI) have been solved and analyzed at 2.1 A, 1.8 A, and 2.6 A resolution, respectively. APPI and BPTI belong to the Kunitz family of inhibitors, which is characterized by a distinctive tertiary fold with three conserved disulfide bonds. At the specificity-determining site of these inhibitors (P1), residue 15(I)4 is an arginine in APPI and a lysine in BPTI, residue types that are counter to the chymotryptic hydrophobic specificity. In the chymotrypsin complexes, the Arg and Lys P1 side chains of the inhibitors adopt conformations that bend away from the bottom of the binding pocket to interact productively with elements of the binding pocket other than those observed for specificity-matched P1 side chains. The stereochemistry of the nucleophilic hydroxyl of Ser 195 in chymotrypsin relative to the scissile P1 bond of the inhibitors is identical to that observed for these groups in the trypsin-APPI complex, where Arg 15(I) is an optimal side chain for tryptic specificity. To further evaluate the diversity of sequences that can be accommodated by one of these inhibitors, APPI, we used phage display to randomly mutate residues 11, 13, 15, 17, and 19, which are major binding determinants. Inhibitors variants were selected that bound to either trypsin or chymotrypsin. As expected, trypsin specificity was principally directed by having a basic side chain at P1 (position 15); however, the P1 residues that were selected for chymotrypsin binding were His and Asn, rather than the expected large hydrophobic types. This can be rationalized by modeling these hydrophilic side chains to have similar H-bonding interactions to those observed in the structures of the described complexes. The specificity, or lack thereof, for the other individual subsites is discussed in the context of the "allowed" residues determined from a phage display mutagenesis selection experiment.
Full Text
The Full Text of this article is available as a PDF (11.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer C. A., Thompson R. C., Blout E. R. The active centers of Streptomyces griseus protease 3, alpha-chymotrypsin, and elastase: enzyme-substrate interactions close to the scissile bond. Biochemistry. 1976 Mar 23;15(6):1296–1299. doi: 10.1021/bi00651a020. [DOI] [PubMed] [Google Scholar]
- Baumann W. K., Bizzozero S. A., Dutler H. Specificity of alpha-chymotrypsin. Dipeptide substrates. FEBS Lett. 1970 Jun 27;8(5):257–260. doi: 10.1016/0014-5793(70)80280-0. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Blevins R. A., Tulinsky A. The refinement and the structure of the dimer of alpha-chymotrypsin at 1.67-A resolution. J Biol Chem. 1985 Apr 10;260(7):4264–4275. doi: 10.2210/pdb5cha/pdb. [DOI] [PubMed] [Google Scholar]
- Blow D. M., Wright C. S., Kukla D., Rühlmann A., Steigemann W., Huber R. A model for the association of bovine pancreatic trypsin inhibitor with chymotrypsin and trypsin. J Mol Biol. 1972 Aug 14;69(1):137–144. doi: 10.1016/0022-2836(72)90028-9. [DOI] [PubMed] [Google Scholar]
- Bode W., Papamokos E., Musil D., Seemueller U., Fritz H. Refined 1.2 A crystal structure of the complex formed between subtilisin Carlsberg and the inhibitor eglin c. Molecular structure of eglin and its detailed interaction with subtilisin. EMBO J. 1986 Apr;5(4):813–818. doi: 10.1002/j.1460-2075.1986.tb04286.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
- Castro M. J., Anderson S. Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin. Biochemistry. 1996 Sep 3;35(35):11435–11446. doi: 10.1021/bi960515w. [DOI] [PubMed] [Google Scholar]
- Chang C. N., Rey M., Bochner B., Heyneker H., Gray G. High-level secretion of human growth hormone by Escherichia coli. Gene. 1987;55(2-3):189–196. doi: 10.1016/0378-1119(87)90279-4. [DOI] [PubMed] [Google Scholar]
- Creighton T. E., Charles I. G. Biosynthesis, processing, and evolution of bovine pancreatic trypsin inhibitor. Cold Spring Harb Symp Quant Biol. 1987;52:511–519. doi: 10.1101/sqb.1987.052.01.058. [DOI] [PubMed] [Google Scholar]
- Creighton T. E., Darby N. J. Functional evolutionary divergence of proteolytic enzymes and their inhibitors. Trends Biochem Sci. 1989 Aug;14(8):319–324. doi: 10.1016/0968-0004(89)90159-x. [DOI] [PubMed] [Google Scholar]
- Dennis M. S., Herzka A., Lazarus R. A. Potent and selective Kunitz domain inhibitors of plasma kallikrein designed by phage display. J Biol Chem. 1995 Oct 27;270(43):25411–25417. doi: 10.1074/jbc.270.43.25411. [DOI] [PubMed] [Google Scholar]
- Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Empie M. W., Laskowski M., Jr Thermodynamics and kinetics of single residue replacements in avian ovomucoid third domains: effect on inhibitor interactions with serine proteinases. Biochemistry. 1982 May 11;21(10):2274–2284. doi: 10.1021/bi00539a002. [DOI] [PubMed] [Google Scholar]
- Evnin L. B., Vásquez J. R., Craik C. S. Substrate specificity of trypsin investigated by using a genetic selection. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6659–6663. doi: 10.1073/pnas.87.17.6659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fehlhammer H., Bode W. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. I. Crystallization, data collection and application of patterson search technique. J Mol Biol. 1975 Nov 15;98(4):683–692. doi: 10.1016/s0022-2836(75)80004-0. [DOI] [PubMed] [Google Scholar]
- GREEN N. M., WORK E. Pancreatic trypsin inhibitor. II. Reaction with trypsin. Biochem J. 1953 May;54(2):347–352. doi: 10.1042/bj0540347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gráf L., Hegyi G., Likó I., Hepp J., Medzihradszky K., Craik C. S., Rutter W. J. Structural and functional integrity of specificity and catalytic sites of trypsin. Int J Pept Protein Res. 1988 Dec;32(6):512–518. doi: 10.1111/j.1399-3011.1988.tb01382.x. [DOI] [PubMed] [Google Scholar]
- Hedstrom L., Perona J. J., Rutter W. J. Converting trypsin to chymotrypsin: residue 172 is a substrate specificity determinant. Biochemistry. 1994 Jul 26;33(29):8757–8763. doi: 10.1021/bi00195a017. [DOI] [PubMed] [Google Scholar]
- Hedstrom L., Szilagyi L., Rutter W. J. Converting trypsin to chymotrypsin: the role of surface loops. Science. 1992 Mar 6;255(5049):1249–1253. doi: 10.1126/science.1546324. [DOI] [PubMed] [Google Scholar]
- Hendrickson W. A. Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 1985;115:252–270. doi: 10.1016/0076-6879(85)15021-4. [DOI] [PubMed] [Google Scholar]
- Huber R., Kukla D., Bode W., Schwager P., Bartels K., Deisenhofer J., Steigemann W. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. J Mol Biol. 1974 Oct 15;89(1):73–101. doi: 10.1016/0022-2836(74)90163-6. [DOI] [PubMed] [Google Scholar]
- Hynes T. R., Randal M., Kennedy L. A., Eigenbrot C., Kossiakoff A. A. X-ray crystal structure of the protease inhibitor domain of Alzheimer's amyloid beta-protein precursor. Biochemistry. 1990 Oct 30;29(43):10018–10022. doi: 10.1021/bi00495a002. [DOI] [PubMed] [Google Scholar]
- Jameson G. W., Roberts D. V., Adams R. W., Kyle W. S., Elmore D. T. Determination of the operational molarity of solutions of bovine alpha-chymotrypsin, trypsin, thrombin and factor Xa by spectrofluorimetric titration. Biochem J. 1973 Jan;131(1):107–117. doi: 10.1042/bj1310107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitaguchi N., Takahashi Y., Oishi K., Shiojiri S., Tokushima Y., Utsunomiya T., Ito H. Enzyme specificity of proteinase inhibitor region in amyloid precursor protein of Alzheimer's disease: different properties compared with protease nexin I. Biochim Biophys Acta. 1990 Mar 29;1038(1):105–113. doi: 10.1016/0167-4838(90)90017-a. [DOI] [PubMed] [Google Scholar]
- Kitaguchi N., Takahashi Y., Tokushima Y., Shiojiri S., Ito H. Novel precursor of Alzheimer's disease amyloid protein shows protease inhibitory activity. Nature. 1988 Feb 11;331(6156):530–532. doi: 10.1038/331530a0. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A., Bebenek K., McClary J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 1991;204:125–139. doi: 10.1016/0076-6879(91)04008-c. [DOI] [PubMed] [Google Scholar]
- Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
- Lowman H. B., Bass S. H., Simpson N., Wells J. A. Selecting high-affinity binding proteins by monovalent phage display. Biochemistry. 1991 Nov 12;30(45):10832–10838. doi: 10.1021/bi00109a004. [DOI] [PubMed] [Google Scholar]
- Lu W., Apostol I., Qasim M. A., Warne N., Wynn R., Zhang W. L., Anderson S., Chiang Y. W., Ogin E., Rothberg I. Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol. 1997 Feb 21;266(2):441–461. doi: 10.1006/jmbi.1996.0781. [DOI] [PubMed] [Google Scholar]
- Markland W., Ley A. C., Lee S. W., Ladner R. C. Iterative optimization of high-affinity proteases inhibitors using phage display. 1. Plasmin. Biochemistry. 1996 Jun 18;35(24):8045–8057. doi: 10.1021/bi9526286. [DOI] [PubMed] [Google Scholar]
- McPherson A. Current approaches to macromolecular crystallization. Eur J Biochem. 1990 Apr 20;189(1):1–23. doi: 10.1111/j.1432-1033.1990.tb15454.x. [DOI] [PubMed] [Google Scholar]
- Navaza J. On the computation of the fast rotation function. Acta Crystallogr D Biol Crystallogr. 1993 Nov 1;49(Pt 6):588–591. doi: 10.1107/S0907444993005141. [DOI] [PubMed] [Google Scholar]
- Neurath H. Evolution of proteolytic enzymes. Science. 1984 Apr 27;224(4647):350–357. doi: 10.1126/science.6369538. [DOI] [PubMed] [Google Scholar]
- Perona J. J., Craik C. S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 1995 Mar;4(3):337–360. doi: 10.1002/pro.5560040301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ponte P., Gonzalez-DeWhitt P., Schilling J., Miller J., Hsu D., Greenberg B., Davis K., Wallace W., Lieberburg I., Fuller F. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature. 1988 Feb 11;331(6156):525–527. doi: 10.1038/331525a0. [DOI] [PubMed] [Google Scholar]
- Roberts B. L., Markland W., Ley A. C., Kent R. B., White D. W., Guterman S. K., Ladner R. C. Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2429–2433. doi: 10.1073/pnas.89.6.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Schroeder D. D., Shaw E. Chromatography of trypsin and its derivatives. Characterization of a new active form of bovine trypsin. J Biol Chem. 1968 Jun 10;243(11):2943–2949. [PubMed] [Google Scholar]
- Seymour J. L., Lindquist R. N., Dennis M. S., Moffat B., Yansura D., Reilly D., Wessinger M. E., Lazarus R. A. Ecotin is a potent anticoagulant and reversible tight-binding inhibitor of factor Xa. Biochemistry. 1994 Apr 5;33(13):3949–3958. doi: 10.1021/bi00179a022. [DOI] [PubMed] [Google Scholar]
- Stroud R. M. A family of protein-cutting proteins. Sci Am. 1974 Jul;231(1):74–88. doi: 10.1038/scientificamerican0774-74. [DOI] [PubMed] [Google Scholar]
- Tanzi R. E., McClatchey A. I., Lamperti E. D., Villa-Komaroff L., Gusella J. F., Neve R. L. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. Nature. 1988 Feb 11;331(6156):528–530. doi: 10.1038/331528a0. [DOI] [PubMed] [Google Scholar]
- Wagner S. L., Siegel R. S., Vedvick T. S., Raschke W. C., Van Nostrand W. E. High level expression, purification, and characterization of the Kunitz-type protease inhibitor domain of protease nexin-2/amyloid beta-protein precursor. Biochem Biophys Res Commun. 1992 Jul 31;186(2):1138–1145. doi: 10.1016/0006-291x(92)90865-i. [DOI] [PubMed] [Google Scholar]