Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jan;7(1):105–111. doi: 10.1002/pro.5560070111

Archael phosphoproteins. Identification of a hexosephosphate mutase and the alpha-subunit of succinyl-CoA synthetase in the extreme acidothermophile Sulfolobus solfataricus.

B Solow 1, K M Bischoff 1, M J Zylka 1, P J Kennelly 1
PMCID: PMC2143807  PMID: 9514265

Abstract

When soluble extracts from the extreme acidophilic archaeon Sulfolobus solfataricus were incubated with [gamma-32P]ATP, several radiolabeled polypeptides were observed following SDS-PAGE. The most prominent of these migrated with apparent molecular masses of 14, 18, 35, 42, 46, 50, and 79 kDa. Phosphoamino acid analysis revealed that all of the proteins contained phosphoserine, with the exception of the 35-kDa one, whose protein-phosphate linkage proved labile to strong acid. The observed pattern of phosphorylation was influenced by the identity of the divalent metal ion cofactor used, Mg2+ versus Mn2+, and the choice of incubation temperature. The 35- and 50-kDa phosphoproteins were purified and their amino-terminal sequences determined. The former polypeptide's amino-terminal sequence closely matched a conserved portion of the alpha-subunit of succinyl-CoA synthetase, which forms an acid-labile phosphohistidyl enzyme intermediate during its catalytic cycle. This identification was confirmed by the ability of succinate or ADP to specifically remove the radiolabel. The 50-kDa polypeptide's sequence contained a heptapeptide motif, Phe/Pro-Gly-Thr-Asp/Ser-Gly-Val/Leu-Arg, found in a similar position in several hexosephosphate mutases. The catalytic mechanism of these mutases involves formation of a phosphoseryl enzyme intermediate. The identity of p50 as a hexosephosphate mutase was confirmed by (1) the ability of sugars and sugar phosphates to induce removal of the labeled phosphoryl group from the protein, and (2) the ability of [32P]glucose 6-phosphate to donate its phosphoryl group to the protein.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey D. L., Wolodko W. T., Bridger W. A. Cloning, characterization, and expression of the beta subunit of pig heart succinyl-CoA synthetase. Protein Sci. 1993 Aug;2(8):1255–1262. doi: 10.1002/pro.5560020808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boles E., Liebetrau W., Hofmann M., Zimmermann F. K. A family of hexosephosphate mutases in Saccharomyces cerevisiae. Eur J Biochem. 1994 Feb 15;220(1):83–96. doi: 10.1111/j.1432-1033.1994.tb18601.x. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Buck D., Spencer M. E., Guest J. R. Primary structure of the succinyl-CoA synthetase of Escherichia coli. Biochemistry. 1985 Oct 22;24(22):6245–6252. doi: 10.1021/bi00343a031. [DOI] [PubMed] [Google Scholar]
  5. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  6. Daas P. J., Wassenaar R. W., Willemsen P., Theunissen R. J., Keltjens J. T., van der Drift C., Vogels G. D. Purification and properties of an enzyme involved in the ATP-dependent activation of the methanol:2-mercaptoethanesulfonic acid methyltransferase reaction in Methanosarcina barkeri. J Biol Chem. 1996 Sep 13;271(37):22339–22345. doi: 10.1074/jbc.271.37.22339. [DOI] [PubMed] [Google Scholar]
  7. Dallas W. S., Dev I. K., Ray P. H. The dihydropteroate synthase gene, folP, is near the leucine tRNA gene, leuU, on the Escherichia coli chromosome. J Bacteriol. 1993 Dec;175(23):7743–7744. doi: 10.1128/jb.175.23.7743-7744.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foster R., Thorner J., Martin G. S. Nucleotidylation, not phosphorylation, is the major source of the phosphotyrosine detected in enteric bacteria. J Bacteriol. 1989 Jan;171(1):272–279. doi: 10.1128/jb.171.1.272-279.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henning W. D., Upton C., McFadden G., Majumdar R., Bridger W. A. Cloning and sequencing of the cytoplasmic precursor to the alpha subunit of rat liver mitochondrial succinyl-CoA synthetase. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1432–1436. doi: 10.1073/pnas.85.5.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hofmann M., Boles E., Zimmermann F. K. Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase. Eur J Biochem. 1994 Apr 15;221(2):741–747. doi: 10.1111/j.1432-1033.1994.tb18787.x. [DOI] [PubMed] [Google Scholar]
  11. Jiang X. M., Neal B., Santiago F., Lee S. J., Romana L. K., Reeves P. R. Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol Microbiol. 1991 Mar;5(3):695–713. doi: 10.1111/j.1365-2958.1991.tb00741.x. [DOI] [PubMed] [Google Scholar]
  12. Kamps M. P., Sefton B. M. Acid and base hydrolysis of phosphoproteins bound to immobilon facilitates analysis of phosphoamino acids in gel-fractionated proteins. Anal Biochem. 1989 Jan;176(1):22–27. doi: 10.1016/0003-2697(89)90266-2. [DOI] [PubMed] [Google Scholar]
  13. Kennelly P. J., Oxenrider K. A., Leng J., Cantwell J. S., Zhao N. Identification of a serine/threonine-specific protein phosphatase from the archaebacterium Sulfolobus solfataricus. J Biol Chem. 1993 Mar 25;268(9):6505–6510. [PubMed] [Google Scholar]
  14. Köplin R., Arnold W., Hötte B., Simon R., Wang G., Pühler A. Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J Bacteriol. 1992 Jan;174(1):191–199. doi: 10.1128/jb.174.1.191-199.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Labigne A., Cussac V., Courcoux P. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol. 1991 Mar;173(6):1920–1931. doi: 10.1128/jb.173.6.1920-1931.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Leng J., Cameron A. J., Buckel S., Kennelly P. J. Isolation and cloning of a protein-serine/threonine phosphatase from an archaeon. J Bacteriol. 1995 Nov;177(22):6510–6517. doi: 10.1128/jb.177.22.6510-6517.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lu M., Kleckner N. Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J Bacteriol. 1994 Sep;176(18):5847–5851. doi: 10.1128/jb.176.18.5847-5851.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nicholls D. J., Sundaram T. K., Atkinson T., Minton N. P. Nucleotide sequence of the succinyl-CoA synthetase alpha-subunit from Thermus aquaticus B. Nucleic Acids Res. 1988 Oct 25;16(20):9858–9858. doi: 10.1093/nar/16.20.9858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nishimura J. S. Succinyl-CoA synthetase structure-function relationships and other considerations. Adv Enzymol Relat Areas Mol Biol. 1986;58:141–172. doi: 10.1002/9780470123041.ch4. [DOI] [PubMed] [Google Scholar]
  21. Olsen G. J., Woese C. R. Ribosomal RNA: a key to phylogeny. FASEB J. 1993 Jan;7(1):113–123. doi: 10.1096/fasebj.7.1.8422957. [DOI] [PubMed] [Google Scholar]
  22. Ray W. J., Jr, Hermodson M. A., Puvathingal J. M., Mahoney W. C. The complete amino acid sequence of rabbit muscle phosphoglucomutase. J Biol Chem. 1983 Aug 10;258(15):9166–9174. [PubMed] [Google Scholar]
  23. Rudolph J., Oesterhelt D. Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium. EMBO J. 1995 Feb 15;14(4):667–673. doi: 10.1002/j.1460-2075.1995.tb07045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith S. C., Kennelly P. J., Potts M. Protein-tyrosine phosphorylation in the Archaea. J Bacteriol. 1997 Apr;179(7):2418–2420. doi: 10.1128/jb.179.7.2418-2420.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Steck T. L., Fairbanks G., Wallach D. F. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection. Biochemistry. 1971 Jun 22;10(13):2617–2624. doi: 10.1021/bi00789a031. [DOI] [PubMed] [Google Scholar]
  26. Westheimer F. H. Why nature chose phosphates. Science. 1987 Mar 6;235(4793):1173–1178. doi: 10.1126/science.2434996. [DOI] [PubMed] [Google Scholar]
  27. Whitehouse D. B., Putt W., Lovegrove J. U., Morrison K., Hollyoake M., Fox M. F., Hopkinson D. A., Edwards Y. H. Phosphoglucomutase 1: complete human and rabbit mRNA sequences and direct mapping of this highly polymorphic marker on human chromosome 1. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):411–415. doi: 10.1073/pnas.89.1.411. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES