Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jan;7(1):7–20. doi: 10.1002/pro.5560070102

Covalent attachment of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to enzymes: the current state of affairs.

M Mewies 1, W S McIntire 1, N S Scrutton 1
PMCID: PMC2143808  PMID: 9514256

Abstract

The first identified covalent flavoprotein, a component of mammalian succinate dehydrogenase, was reported 42 years ago. Since that time, more than 20 covalent flavoenzymes have been described, each possessing one of five modes of FAD or FMN linkage to protein. Despite the early identification of covalent flavoproteins, the mechanisms of covalent bond formation and the roles of the covalent links are only recently being appreciated. The main focus of this review is, therefore, one of mechanism and function, in addition to surveying the types of linkage observed and the methods employed for their identification. Case studies are presented for a variety of covalent flavoenzymes, from which general findings are beginning to emerge.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. August P. R., Flickinger M. C., Sherman D. H. Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae. J Bacteriol. 1994 Jul;176(14):4448–4454. doi: 10.1128/jb.176.14.4448-4454.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bach A. W., Lan N. C., Johnson D. L., Abell C. W., Bembenek M. E., Kwan S. W., Seeburg P. H., Shih J. C. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4934–4938. doi: 10.1073/pnas.85.13.4934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson T. E., Filman D. J., Walsh C. T., Hogle J. M. An enzyme-substrate complex involved in bacterial cell wall biosynthesis. Nat Struct Biol. 1995 Aug;2(8):644–653. doi: 10.1038/nsb0895-644. [DOI] [PubMed] [Google Scholar]
  4. Blaut M., Whittaker K., Valdovinos A., Ackrell B. A., Gunsalus R. P., Cecchini G. Fumarate reductase mutants of Escherichia coli that lack covalently bound flavin. J Biol Chem. 1989 Aug 15;264(23):13599–13604. [PubMed] [Google Scholar]
  5. Boyd G., Mathews F. S., Packman L. C., Scrutton N. S. Trimethylamine dehydrogenase of bacterium W3A1. Molecular cloning, sequence determination and over-expression of the gene. FEBS Lett. 1992 Aug 24;308(3):271–276. doi: 10.1016/0014-5793(92)81291-s. [DOI] [PubMed] [Google Scholar]
  6. Brandsch R., Bichler V. Autoflavinylation of apo6-hydroxy-D-nicotine oxidase. J Biol Chem. 1991 Oct 5;266(28):19056–19062. [PubMed] [Google Scholar]
  7. Brandsch R., Bichler V. Covalent flavinylation of 6-hydroxy-D-nicotine oxidase involves an energy-requiring process. FEBS Lett. 1987 Nov 16;224(1):121–124. doi: 10.1016/0014-5793(87)80433-7. [DOI] [PubMed] [Google Scholar]
  8. Brandsch R., Bichler V. In vivo and in vitro expression of the 6-hydroxy-D-nicotine oxidase gene of Arthrobacter oxidans, cloned into Escherichia coli, as an enzymatically active, covalently flavinylated polypeptide. FEBS Lett. 1985 Nov 18;192(2):204–208. doi: 10.1016/0014-5793(85)80108-3. [DOI] [PubMed] [Google Scholar]
  9. Brandsch R., Bichler V., Krauss B. Binding of FAD to 6-hydroxy-D-nicotine oxidase apoenzyme prevents degradation of the holoenzyme. Biochem J. 1989 Feb 15;258(1):187–192. doi: 10.1042/bj2580187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brandsch R., Bichler V., Schmidt M., Buchner J. GroE dependence of refolding and holoenzyme formation of 6-hydroxy-D-nicotine oxidase. J Biol Chem. 1992 Oct 15;267(29):20844–20849. [PubMed] [Google Scholar]
  11. Brandsch R., Bichler V. Studies in vitro on the flavinylation of 6-hydroxy-D-nicotine oxidase. Eur J Biochem. 1986 Oct 15;160(2):285–289. doi: 10.1111/j.1432-1033.1986.tb09969.x. [DOI] [PubMed] [Google Scholar]
  12. Brookfield D. E., Green J., Ali S. T., Machado R. S., Guest J. R. Evidence for two protein-lipoylation activities in Escherichia coli. FEBS Lett. 1991 Dec 16;295(1-3):13–16. doi: 10.1016/0014-5793(91)81373-g. [DOI] [PubMed] [Google Scholar]
  13. Brühmüller M., Decker K. Covalently bound flavin in D-6-hydroxynicotine oxidase from Arthrobacter oxidans. Amino-acid sequence of the FAD-peptide. Eur J Biochem. 1973 Aug 17;37(2):256–258. doi: 10.1111/j.1432-1033.1973.tb02983.x. [DOI] [PubMed] [Google Scholar]
  14. Chen Z. W., Koh M., Van Driessche G., Van Beeumen J. J., Bartsch R. G., Meyer T. E., Cusanovich M. A., Mathews F. S. The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science. 1994 Oct 21;266(5184):430–432. doi: 10.1126/science.7939681. [DOI] [PubMed] [Google Scholar]
  15. Chlumsky L. J., Zhang L., Ramsey A. J., Jorns M. S. Preparation and properties of recombinant corynebacterial sarcosine oxidase: evidence for posttranslational modification during turnover with sarcosine. Biochemistry. 1993 Oct 19;32(41):11132–11142. doi: 10.1021/bi00092a024. [DOI] [PubMed] [Google Scholar]
  16. Cole S. T. Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem. 1982 Mar 1;122(3):479–484. doi: 10.1111/j.1432-1033.1982.tb06462.x. [DOI] [PubMed] [Google Scholar]
  17. Cook R. J., Misono K. S., Wagner C. The amino acid sequences of the flavin-peptides of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria. J Biol Chem. 1985 Oct 25;260(24):12998–13002. [PubMed] [Google Scholar]
  18. Croteau N., Vrielink A. Crystallization and preliminary X-ray analysis of cholesterol oxidase from Brevibacterium sterolicum containing covalently bound FAD. J Struct Biol. 1996 Mar-Apr;116(2):317–319. doi: 10.1006/jsbi.1996.0047. [DOI] [PubMed] [Google Scholar]
  19. Decker K. F. Biosynthesis and function of enzymes with covalently bound flavin. Annu Rev Nutr. 1993;13:17–41. doi: 10.1146/annurev.nu.13.070193.000313. [DOI] [PubMed] [Google Scholar]
  20. Decker K., Brandsch R. Flavoproteins with a covalent histidyl(N3)-8 alpha-riboflavin linkage. Biofactors. 1991 Jun;3(2):69–81. [PubMed] [Google Scholar]
  21. Dittrich H., Kutchan T. M. Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):9969–9973. doi: 10.1073/pnas.88.22.9969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Dolata M. M., Van Beeumen J. J., Ambler R. P., Meyer T. E., Cusanovich M. A. Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6-kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin. J Biol Chem. 1993 Jul 5;268(19):14426–14431. [PubMed] [Google Scholar]
  23. Edmondson D. E., Kenney W. C. Identification and properties of 8alpha-(N(1)-histidyl)-riboflavin: the flavin component of thiamine dehydrogenase and beta-cyclopiazonate oxidocyclase. Biochem Biophys Res Commun. 1976 Jan 12;68(1):242–248. doi: 10.1016/0006-291x(76)90035-8. [DOI] [PubMed] [Google Scholar]
  24. Edmondson D. E., Kenney W. C., Singer T. P. Synthesis and isolation of 8 alpha-substituted flavins and flavin peptides. Methods Enzymol. 1978;53:449–465. doi: 10.1016/s0076-6879(78)53049-8. [DOI] [PubMed] [Google Scholar]
  25. Ghisla S., Kenney W. C., Knappe W. R., McIntire W., Singer T. P. Chemical synthesis and some properties of 6-substituted flavins. Biochemistry. 1980 Jun 10;19(12):2537–2544. doi: 10.1021/bi00553a001. [DOI] [PubMed] [Google Scholar]
  26. Ghisla S., Massey V. Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem. 1989 Apr 15;181(1):1–17. doi: 10.1111/j.1432-1033.1989.tb14688.x. [DOI] [PubMed] [Google Scholar]
  27. Gottowik J., Cesura A. M., Malherbe P., Lang G., Da Prada M. Characterisation of wild-type and mutant forms of human monoamine oxidase A and B expressed in a mammalian cell line. FEBS Lett. 1993 Feb 8;317(1-2):152–156. doi: 10.1016/0014-5793(93)81512-x. [DOI] [PubMed] [Google Scholar]
  28. Groen B. W., De Vries S., Duine J. A. Characterization of hexose oxidase from the red seaweed Chondrus crispus. Eur J Biochem. 1997 Mar 15;244(3):858–861. doi: 10.1111/j.1432-1033.1997.00858.x. [DOI] [PubMed] [Google Scholar]
  29. Hederstedt L., Bergman T., Jörnvall H. Processing of Bacillus subtilis succinate dehydrogenase and cytochrome b-558 polypeptides. Lack of covalently bound flavin in the Bacillus enzyme expressed in Escherichia coli. FEBS Lett. 1987 Mar 23;213(2):385–390. doi: 10.1016/0014-5793(87)81527-2. [DOI] [PubMed] [Google Scholar]
  30. Hederstedt L. Succinate dehydrogenase mutants of Bacillus subtilis lacking covalently bound flavin in the flavoprotein subunit. Eur J Biochem. 1983 May 16;132(3):589–593. doi: 10.1111/j.1432-1033.1983.tb07404.x. [DOI] [PubMed] [Google Scholar]
  31. Huang L., Scrutton N. S., Hille R. Reaction of the C30A mutant of trimethylamine dehydrogenase with diethylmethylamine. J Biol Chem. 1996 Jun 7;271(23):13401–13406. doi: 10.1074/jbc.271.23.13401. [DOI] [PubMed] [Google Scholar]
  32. Kearney E. B., Salach J. I., Walker W. H., Seng R. L., Kenney W., Zeszotek E., Singer T. P. The covalently-bound flavin of hepatic monoamine oxidase. 1. Isolation and sequence of a flavin peptide and evidence for binding at the 8alpha position. Eur J Biochem. 1971 Dec;24(2):321–327. doi: 10.1111/j.1432-1033.1971.tb19689.x. [DOI] [PubMed] [Google Scholar]
  33. Kenney W. C., Edmondson D. E., Singer T. P., Nishikimi M., Noguchi E., Yagi K. Identification of the covalently-bound flavin of L-galactonolactone oxidase from yeast. FEBS Lett. 1979 Jan 1;97(1):40–42. doi: 10.1016/0014-5793(79)80047-2. [DOI] [PubMed] [Google Scholar]
  34. Kenney W. C., McIntire W., Steenkamp D. J. Amino acid sequence of a cofactor peptide from trimethylamine dehydrogenase. FEBS Lett. 1978 Jan 1;85(1):137–140. doi: 10.1016/0014-5793(78)81265-4. [DOI] [PubMed] [Google Scholar]
  35. Kenney W. C., McIntire W., Yamanaka T. Structure of the covalently bound flavin of Chlorobium cytochrome. Biochim Biophys Acta. 1977 Aug 11;483(2):467–474. doi: 10.1016/0005-2744(77)90074-2. [DOI] [PubMed] [Google Scholar]
  36. Kenney W. C., Singer T. P. Evidence for a thioether linkage between the flavin and polypeptide chain of Chromatium cytochrome c 552. J Biol Chem. 1977 Jul 25;252(14):4767–4772. [PubMed] [Google Scholar]
  37. Kenney W. C., Singer T. P., Fukuyama M., Miyake Y. Identification of the covalently bound flavin prosthetic group of cholesterol oxidase. J Biol Chem. 1979 Jun 10;254(11):4689–4690. [PubMed] [Google Scholar]
  38. Kim J., Fuller J. H., Cecchini G., McIntire W. S. Cloning, sequencing, and expression of the structural genes for the cytochrome and flavoprotein subunits of p-cresol methylhydroxylase from two strains of Pseudomonas putida. J Bacteriol. 1994 Oct;176(20):6349–6361. doi: 10.1128/jb.176.20.6349-6361.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kim J., Fuller J. H., Kuusk V., Cunane L., Chen Z. W., Mathews F. S., McIntire W. S. The cytochrome subunit is necessary for covalent FAD attachment to the flavoprotein subunit of p-cresol methylhydroxylase. J Biol Chem. 1995 Dec 29;270(52):31202–31209. doi: 10.1074/jbc.270.52.31202. [DOI] [PubMed] [Google Scholar]
  40. Koshizaka T., Nishikimi M., Ozawa T., Yagi K. Isolation and sequence analysis of a complementary DNA encoding rat liver L-gulono-gamma-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis. J Biol Chem. 1988 Feb 5;263(4):1619–1621. [PubMed] [Google Scholar]
  41. Koyama Y., Yamamoto-Otake H., Suzuki M., Nakano E. Cloning and expression of the sarcosine oxidase gene from Bacillus sp. NS-129 in Escherichia coli. Agric Biol Chem. 1991 May;55(5):1259–1263. [PubMed] [Google Scholar]
  42. Kutchan T. M., Dittrich H. Characterization and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. J Biol Chem. 1995 Oct 13;270(41):24475–24481. doi: 10.1074/jbc.270.41.24475. [DOI] [PubMed] [Google Scholar]
  43. Kwan S. W., Lewis D. A., Zhou B. P., Abell C. W. Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis. Arch Biochem Biophys. 1995 Jan 10;316(1):385–391. doi: 10.1006/abbi.1995.1051. [DOI] [PubMed] [Google Scholar]
  44. Lan N. C., Heinzmann C., Gal A., Klisak I., Orth U., Lai E., Grimsby J., Sparkes R. S., Mohandas T., Shih J. C. Human monoamine oxidase A and B genes map to Xp 11.23 and are deleted in a patient with Norrie disease. Genomics. 1989 May;4(4):552–559. doi: 10.1016/0888-7543(89)90279-6. [DOI] [PubMed] [Google Scholar]
  45. Lang H., Polster M., Brandsch R. Rat liver dimethylglycine dehydrogenase. Flavinylation of the enzyme in hepatocytes in primary culture and characterization of a cDNA clone. Eur J Biochem. 1991 Jun 15;198(3):793–799. doi: 10.1111/j.1432-1033.1991.tb16083.x. [DOI] [PubMed] [Google Scholar]
  46. Langer M., Reck G., Reed J., Rétey J. Identification of serine-143 as the most likely precursor of dehydroalanine in the active site of histidine ammonia-lyase. A study of the overexpressed enzyme by site-directed mutagenesis. Biochemistry. 1994 May 31;33(21):6462–6467. doi: 10.1021/bi00187a011. [DOI] [PubMed] [Google Scholar]
  47. Lu G., Unge T., Owera-Atepo J. B., Shih J. C., Ekblom J., Oreland L. Characterization and partial purification of human monoamine oxidase-B expressed in Escherichia coli. Protein Expr Purif. 1996 May;7(3):315–322. doi: 10.1006/prep.1996.0045. [DOI] [PubMed] [Google Scholar]
  48. Maguire J. J., Magnusson K., Hederstedt L. Bacillus subtilis mutant succinate dehydrogenase lacking covalently bound flavin: identification of the primary defect and studies on the iron-sulfur clusters in mutated and wild-type enzyme. Biochemistry. 1986 Sep 9;25(18):5202–5208. doi: 10.1021/bi00366a033. [DOI] [PubMed] [Google Scholar]
  49. Mathews F. S., Chen Z. W., Bellamy H. D., McIntire W. S. Three-dimensional structure of p-cresol methylhydroxylase (flavocytochrome c) from Pseudomonas putida at 3.0-A resolution. Biochemistry. 1991 Jan 8;30(1):238–247. doi: 10.1021/bi00215a034. [DOI] [PubMed] [Google Scholar]
  50. Matsushita K., Ameyama M. D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol. 1982;89(Pt 500):149–154. doi: 10.1016/s0076-6879(82)89026-5. [DOI] [PubMed] [Google Scholar]
  51. Matsushita K., Ameyama M. D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Methods Enzymol. 1982;89(Pt 500):149–154. doi: 10.1016/s0076-6879(82)89026-5. [DOI] [PubMed] [Google Scholar]
  52. Mauch L., Bichler V., Brandsch R. Lysine can replace arginine 67 in the mediation of covalent attachment of FAD to histidine 71 of 6-hydroxy-D-nicotine oxidase. J Biol Chem. 1990 Aug 5;265(22):12761–12762. [PubMed] [Google Scholar]
  53. Mayhew S. G., Whitfield C. D., Ghisla S., Schuman-Jörns M. Identification and properties of new flavins in electron-transferring flavoprotein from Peptostreptococcus elsdenii and pig-liver glycolate oxidase. Eur J Biochem. 1974 May 15;44(2):579–591. doi: 10.1111/j.1432-1033.1974.tb03515.x. [DOI] [PubMed] [Google Scholar]
  54. McIntire W. S. Quinoproteins. FASEB J. 1994 May;8(8):513–521. doi: 10.1096/fasebj.8.8.8181669. [DOI] [PubMed] [Google Scholar]
  55. McIntire W. S., Wemmer D. E., Chistoserdov A., Lidstrom M. E. A new cofactor in a prokaryotic enzyme: tryptophan tryptophylquinone as the redox prosthetic group in methylamine dehydrogenase. Science. 1991 May 10;252(5007):817–824. doi: 10.1126/science.2028257. [DOI] [PubMed] [Google Scholar]
  56. McIntire W., Edmondson D. E., Hopper D. J., Singer T. P. 8 alpha-(O-Tyrosyl)flavin adenine dinucleotide, the prosthetic group of bacterial p-cresol methylhydroxylase. Biochemistry. 1981 May 26;20(11):3068–3075. doi: 10.1021/bi00514a013. [DOI] [PubMed] [Google Scholar]
  57. McIntire W., Singer T. P., Ameyama M., Adachi O., Matsushita K., Shinagawa E. Identification of the covalently bound flavins of D-gluconate dehydrogenases from Pseudomonas aeruginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus. Biochem J. 1985 Nov 1;231(3):651–654. doi: 10.1042/bj2310651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Mewies M., Basran J., Packman L. C., Hille R., Scrutton N. S. Involvement of a flavin iminoquinone methide in the formation of 6-hydroxyflavin mononucleotide in trimethylamine dehydrogenase: a rationale for the existence of 8alpha-methyl and C6-linked covalent flavoproteins. Biochemistry. 1997 Jun 10;36(23):7162–7168. doi: 10.1021/bi970621d. [DOI] [PubMed] [Google Scholar]
  59. Mewies M., Packman L. C., Mathews F. S., Scrutton N. S. Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine. Biochem J. 1996 Jul 1;317(Pt 1):267–272. doi: 10.1042/bj3170267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Mihalik S. J., McGuinness M., Watkins P. A. Purification and characterization of peroxisomal L-pipecolic acid oxidase from monkey liver. J Biol Chem. 1991 Mar 15;266(8):4822–4830. [PubMed] [Google Scholar]
  61. Moore E. G., Ghisla S., Massey V. Properties of flavins where the 8-methyl group is replaced by mercapto- residues. J Biol Chem. 1979 Sep 10;254(17):8173–8178. [PubMed] [Google Scholar]
  62. Morris T. W., Reed K. E., Cronan J. E., Jr Identification of the gene encoding lipoate-protein ligase A of Escherichia coli. Molecular cloning and characterization of the lplA gene and gene product. J Biol Chem. 1994 Jun 10;269(23):16091–16100. [PubMed] [Google Scholar]
  63. Murzin A. G. Structural classification of proteins: new superfamilies. Curr Opin Struct Biol. 1996 Jun;6(3):386–394. doi: 10.1016/s0959-440x(96)80059-5. [DOI] [PubMed] [Google Scholar]
  64. Nagursky H., Bichler V., Brandsch R. Phosphoenolpyruvate-dependent flavinylation of 6-hydroxy-D-nicotine oxidase. Eur J Biochem. 1988 Nov 1;177(2):319–325. doi: 10.1111/j.1432-1033.1988.tb14379.x. [DOI] [PubMed] [Google Scholar]
  65. Nagy J., Salach J. I. Identity of the active site flavin-peptide fragments from the human "A"-form and the bovine "B"-form of monoamine oxidase. Arch Biochem Biophys. 1981 May;208(2):388–394. doi: 10.1016/0003-9861(81)90523-3. [DOI] [PubMed] [Google Scholar]
  66. Nakamura N., Matsuzaki R., Choi Y. H., Tanizawa K., Sanders-Loehr J. Biosynthesis of topa quinone cofactor in bacterial amine oxidases. Solvent origin of C-2 oxygen determined by Raman spectroscopy. J Biol Chem. 1996 Mar 1;271(9):4718–4724. doi: 10.1074/jbc.271.9.4718. [DOI] [PubMed] [Google Scholar]
  67. Nishiya Y., Imanaka T. Analysis of interaction between the Arthrobacter sarcosine oxidase and the coenzyme flavin adenine dinucleotide by site-directed mutagenesis. Appl Environ Microbiol. 1996 Jul;62(7):2405–2410. doi: 10.1128/aem.62.7.2405-2410.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Ohishi N., Yagi K. Covalently bound flavin as prosthetic group of choline oxidase. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1084–1088. doi: 10.1016/0006-291x(79)90228-6. [DOI] [PubMed] [Google Scholar]
  69. Ohta-Fukuyama M., Miyake Y., Emi S., Yamano T. Identification and properties of the prosthetic group of choline oxidase from Alcaligenes sp. J Biochem. 1980 Jul;88(1):197–203. [PubMed] [Google Scholar]
  70. Otto A., Stoltz M., Sailer H. P., Brandsch R. Biogenesis of the covalently flavinylated mitochondrial enzyme dimethylglycine dehydrogenase. J Biol Chem. 1996 Apr 19;271(16):9823–9829. doi: 10.1074/jbc.271.16.9823. [DOI] [PubMed] [Google Scholar]
  71. Packman L. C., Mewies M., Scrutton N. S. The flavinylation reaction of trimethylamine dehydrogenase. Analysis by directed mutagenesis and electrospray mass spectrometry. J Biol Chem. 1995 Jun 2;270(22):13186–13191. doi: 10.1074/jbc.270.22.13186. [DOI] [PubMed] [Google Scholar]
  72. Pealing S. L., Black A. C., Manson F. D., Ward F. B., Chapman S. K., Reid G. A. Sequence of the gene encoding flavocytochrome c from Shewanella putrefaciens: a tetraheme flavoenzyme that is a soluble fumarate reductase related to the membrane-bound enzymes from other bacteria. Biochemistry. 1992 Dec 8;31(48):12132–12140. doi: 10.1021/bi00163a023. [DOI] [PubMed] [Google Scholar]
  73. Powell J. F., Hsu Y. P., Weyler W., Chen S. A., Salach J., Andrikopoulos K., Mallet J., Breakefield X. O. The primary structure of bovine monoamine oxidase type A. Comparison with peptide sequences of bovine monoamine oxidase type B and other flavoenzymes. Biochem J. 1989 Apr 15;259(2):407–413. doi: 10.1042/bj2590407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Recsei P. A., Snell E. E. Pyruvoyl enzymes. Annu Rev Biochem. 1984;53:357–387. doi: 10.1146/annurev.bi.53.070184.002041. [DOI] [PubMed] [Google Scholar]
  75. Robinson K. M., Lemire B. D. Covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein requires import into mitochondria, presequence removal, and folding. J Biol Chem. 1996 Feb 23;271(8):4055–4060. doi: 10.1074/jbc.271.8.4055. [DOI] [PubMed] [Google Scholar]
  76. Robinson K. M., Rothery R. A., Weiner J. H., Lemire B. D. The covalent attachment of FAD to the flavoprotein of Saccharomyces cerevisiae succinate dehydrogenase is not necessary for import and assembly into mitochondria. Eur J Biochem. 1994 Jun 15;222(3):983–990. doi: 10.1111/j.1432-1033.1994.tb18949.x. [DOI] [PubMed] [Google Scholar]
  77. Rucker R. B., McGee C. Chemical modifications of proteins in vivo: selected examples important to cellular regulation. J Nutr. 1993 Jun;123(6):977–990. doi: 10.1093/jn/123.6.977. [DOI] [PubMed] [Google Scholar]
  78. Rucker R. B., Wold F. Cofactors in and as posttranslational protein modifications. FASEB J. 1988 Apr;2(7):2252–2261. doi: 10.1096/fasebj.2.7.3127264. [DOI] [PubMed] [Google Scholar]
  79. Ruggiero C. E., Smith J. A., Tanizawa K., Dooley D. M. Mechanistic studies of topa quinone biogenesis in phenylethylamine oxidase. Biochemistry. 1997 Feb 25;36(8):1953–1959. doi: 10.1021/bi9628836. [DOI] [PubMed] [Google Scholar]
  80. SINGER T. P., KEARNEY E. B., MASSEY V. Observations on the flavin moiety of succinic dehydrogenase. Arch Biochem Biophys. 1956 Jan;60(1):255–257. doi: 10.1016/0003-9861(56)90415-5. [DOI] [PubMed] [Google Scholar]
  81. Schilling B., Lerch K. Cloning, sequencing and heterologous expression of the monoamine oxidase gene from Aspergillus niger. Mol Gen Genet. 1995 May 20;247(4):430–438. doi: 10.1007/BF00293144. [DOI] [PubMed] [Google Scholar]
  82. Scrutton N. S., Packman L. C., Mathews F. S., Rohlfs R. J., Hille R. Assembly of redox centers in the trimethylamine dehydrogenase of bacterium W3A1. Properties of the wild-type enzyme and a C30A mutant expressed from a cloned gene in Escherichia coli. J Biol Chem. 1994 May 13;269(19):13942–13950. [PubMed] [Google Scholar]
  83. Singer T. P., Edmondson D. E. Structure, properties, and determination of covalently bound flavins. Methods Enzymol. 1980;66:253–264. doi: 10.1016/0076-6879(80)66466-0. [DOI] [PubMed] [Google Scholar]
  84. Singer T. P., McIntire W. S. Covalent attachment of flavin to flavoproteins: occurrence, assay, and synthesis. Methods Enzymol. 1984;106:369–378. doi: 10.1016/0076-6879(84)06039-0. [DOI] [PubMed] [Google Scholar]
  85. Singer T. P., Ramsay R. R. Flauoprotein structure and mechanism 2. Monoamine oxidases: old friends hold many surprises. FASEB J. 1995 May;9(8):605–610. doi: 10.1096/fasebj.9.8.7768351. [DOI] [PubMed] [Google Scholar]
  86. Steenkamp D. J., Mallinson J. Trimethylamine dehydrogenase from a methylotrophic bacterium. I. Isolation and steady-state kinetics. Biochim Biophys Acta. 1976 May 13;429(3):705–719. doi: 10.1016/0005-2744(76)90319-3. [DOI] [PubMed] [Google Scholar]
  87. Steenkamp D. J., McIntire W., Kenney W. C. Structure of the covalently bound coenzyme of trimethylamine dehydrogenase. Evidence for a 6-substituted flavin. J Biol Chem. 1978 Apr 25;253(8):2818–2824. [PubMed] [Google Scholar]
  88. Steenkamp D. J., Singer T. P. On the presence of a novel covalently bound oxidation-reduction cofactor, iron and labile sulfur in trimethylamine dehydrogenase. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1289–1295. doi: 10.1016/0006-291x(76)90794-4. [DOI] [PubMed] [Google Scholar]
  89. Steiner H., Kispal G., Zollner A., Haid A., Neupert W., Lill R. Heme binding to a conserved Cys-Pro-Val motif is crucial for the catalytic function of mitochondrial heme lyases. J Biol Chem. 1996 Dec 20;271(51):32605–32611. doi: 10.1074/jbc.271.51.32605. [DOI] [PubMed] [Google Scholar]
  90. Stoltz M., Henninger H. P., Brandsch R. The design of an alternative, covalently flavinylated 6-hydroxy-D-nicotine oxidase by replacing the FAD-binding histidine by cysteine and reconstitution of the holoenzyme with 8-(methylsulfonyl)FAD. FEBS Lett. 1996 May 20;386(2-3):194–196. doi: 10.1016/0014-5793(96)00438-3. [DOI] [PubMed] [Google Scholar]
  91. Stoltz M., Rassow J., Bückmann A. F., Brandsch R. Covalent attachment of FAD derivatives to a fusion protein consisting of 6-hydroxy-D-nicotine oxidase and a mitochondrial presequence. Folding, enzyme activity, and import of the modified protein into yeast mitochondria. J Biol Chem. 1996 Oct 11;271(41):25208–25212. doi: 10.1074/jbc.271.41.25208. [DOI] [PubMed] [Google Scholar]
  92. Stoltz M., Rysavy P., Kalousek F., Brandsch R. Folding, flavinylation, and mitochondrial import of 6-hydroxy-D-nicotine oxidase fused to the presequence of rat dimethylglycine dehydrogenase. J Biol Chem. 1995 Apr 7;270(14):8016–8022. doi: 10.1074/jbc.270.14.8016. [DOI] [PubMed] [Google Scholar]
  93. Suzuki K., Ogishima M., Sugiyama M., Inouye Y., Nakamura S., Imamura S. Molecular cloning and expression of a Streptomyces sarcosine oxidase gene in Streptomyces lividans. Biosci Biotechnol Biochem. 1992 Mar;56(3):432–436. doi: 10.1271/bbb.56.432. [DOI] [PubMed] [Google Scholar]
  94. Sweetman L., Burri B. J., Nyhan W. L. Biotin holocarboxylase synthetase deficiency. Ann N Y Acad Sci. 1985;447:288–296. doi: 10.1111/j.1749-6632.1985.tb18446.x. [DOI] [PubMed] [Google Scholar]
  95. Takai T., Wada K., Tanabe T. Primary structure of the biotin-binding site of chicken liver acetyl-CoA carboxylase. FEBS Lett. 1987 Feb 9;212(1):98–102. doi: 10.1016/0014-5793(87)81564-8. [DOI] [PubMed] [Google Scholar]
  96. Van Driessche G., Koh M., Chen Z. W., Mathews F. S., Meyer T. E., Bartsch R. G., Cusanovich M. A., Van Beeumen J. J. Covalent structure of the flavoprotein subunit of the flavocytochrome c: sulfide dehydrogenase from the purple phototrophic bacterium Chromatium vinosum. Protein Sci. 1996 Sep;5(9):1753–1764. doi: 10.1002/pro.5560050901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Walker W. H., Kearney E. B., Seng R. L., Singer T. P. The covalently-bound flavin of hepatic monoamine oxidase. 2. Identification and properties of cysteinyl riboflavin. Eur J Biochem. 1971 Dec;24(2):328–331. doi: 10.1111/j.1432-1033.1971.tb19690.x. [DOI] [PubMed] [Google Scholar]
  98. Walker W. H., Singer T. P., Ghisla S., Hemmerich P. Studies on succinate dehydrogenase. 8 -Histidyl-FAD as the active center of succinate dehydrogenase. Eur J Biochem. 1972 Mar 27;26(2):279–289. doi: 10.1111/j.1432-1033.1972.tb01766.x. [DOI] [PubMed] [Google Scholar]
  99. Weyler W., Hsu Y. P., Breakefield X. O. Biochemistry and genetics of monoamine oxidase. Pharmacol Ther. 1990;47(3):391–417. doi: 10.1016/0163-7258(90)90064-9. [DOI] [PubMed] [Google Scholar]
  100. Williamson G., Edmondson D. E. Effect of pH on oxidation-reduction potentials of 8 alpha-N-imidazole-substituted flavins. Biochemistry. 1985 Dec 17;24(26):7790–7797. doi: 10.1021/bi00347a043. [DOI] [PubMed] [Google Scholar]
  101. Willie A., Edmondson D. E., Jorns M. S. Sarcosine oxidase contains a novel covalently bound FMN. Biochemistry. 1996 Apr 23;35(16):5292–5299. doi: 10.1021/bi952995h. [DOI] [PubMed] [Google Scholar]
  102. Willie A., Jorns M. S. Discovery of a third coenzyme in sarcosine oxidase. Biochemistry. 1995 Dec 26;34(51):16703–16707. doi: 10.1021/bi00051a019. [DOI] [PubMed] [Google Scholar]
  103. Wittwer A. J., Wagner C. Identification of the folate-binding proteins of rat liver mitochondria as dimethylglycine dehydrogenase and sarcosine dehydrogenase. Flavoprotein nature and enzymatic properties of the purified proteins. J Biol Chem. 1981 Apr 25;256(8):4109–4115. [PubMed] [Google Scholar]
  104. Wu H. F., Chen K., Shih J. C. Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines. Mol Pharmacol. 1993 Jun;43(6):888–893. [PubMed] [Google Scholar]
  105. Yang C. C., Packman L. C., Scrutton N. S. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase. Relationship to trimethylamine dehydrogenase and implications for substrate recognition. Eur J Biochem. 1995 Aug 15;232(1):264–271. doi: 10.1111/j.1432-1033.1995.tb20808.x. [DOI] [PubMed] [Google Scholar]
  106. Yang F., Moss L. G., Phillips G. N., Jr The molecular structure of green fluorescent protein. Nat Biotechnol. 1996 Oct;14(10):1246–1251. doi: 10.1038/nbt1096-1246. [DOI] [PubMed] [Google Scholar]
  107. Yeh J. I., Claiborne A., Hol W. G. Structure of the native cysteine-sulfenic acid redox center of enterococcal NADH peroxidase refined at 2.8 A resolution. Biochemistry. 1996 Aug 6;35(31):9951–9957. doi: 10.1021/bi961037s. [DOI] [PubMed] [Google Scholar]
  108. Zhou B. P., Lewis D. A., Kwan S. W., Kirksey T. J., Abell C. W. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity. Biochemistry. 1995 Jul 25;34(29):9526–9531. doi: 10.1021/bi00029a029. [DOI] [PubMed] [Google Scholar]
  109. de Jong E., van Berkel W. J., van der Zwan R. P., de Bont J. A. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. Eur J Biochem. 1992 Sep 15;208(3):651–657. doi: 10.1111/j.1432-1033.1992.tb17231.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES