Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jan;7(1):132–141. doi: 10.1002/pro.5560070114

NMR studies of internal dynamics of serine proteinase protein inhibitors: Binding region mobilities of intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor (CMTI)-III of the squash family and comparison with those of counterparts of CMTI-V of the potato I family.

J Liu 1, Y Gong 1, O Prakash 1, L Wen 1, I Lee 1, J K Huang 1, R Krishnamoorthi 1
PMCID: PMC2143810  PMID: 9514268

Abstract

Serine proteinase protein inhibitors follow the standard mechanism of inhibition (Laskowski M Jr, Kato I, 1980, Annu Rev Biochem 49:593-626), whereby an enzyme-catalyzed equilibrium between intact (I) and reactive-site hydrolyzed inhibitor (I*) is reached. The hydrolysis constant, Khyd, is defined as [I*]/[I]. Here, we explore the role of internal dynamics in the resynthesis of the scissile bond by comparing the internal mobility data of intact and cleaved inhibitors belonging to two different families. The inhibitors studied are recombinant Cucurbita maxima trypsin inhibitor III (rCMTI-III; Mr 3 kDa) of the squash family and rCMTI-V (Mr approximately 7 kDa) of the potato I family. These two inhibitors have different binding loop-scaffold interactions and different Khyd values--2.4 (CMTI-III) and 9 (CMTI-V)--at 25 degrees C. The reactive-site peptide bond (P1-P1') is that between Arg5 and Ile6 in CMTI-III, and that between Lys44 and Asp45 in CMTI-V. The order parameters (S2) of backbone NHs of uniformly 15N-labeled rCMTI-III and rCMTI-III* were determined from measurements of 15N spin-lattice and spin-spin relaxation rates, and [1H]-15N steady-state heteronuclear Overhauser effects, using the model-free formalism, and compared with the data reported previously for rCMTI-V and rCMTI-V*. The backbones of rCMTI-III [(S2) = 0.71] and rCMTI-III* [(S2) = 0.63] are more flexible than those of rCMTI-V [(S2) = 0.83] and rCMTI-V* [(S2) = 0.85]. The binding loop residues, P4-P1, in the two proteins show the following average order parameters: 0.57 (rCMTI-III) and 0.44 (rCMTI-III*); 0.70 (rCMTI-V) and 0.40 (rCMTI-V*). The P1'-P4' residues, on the other hand, are associated with (S2) values of 0.56 (rCMTI-III) and 0.47 (rCMTI-III*); and 0.73 (rCMTI-V) and 0.83 (rCMTI-V*). The newly formed C-terminal (Pn residues) gains a smaller magnitude of flexibility in rCMTI-III* due to the Cys3-Cys20 crosslink. In contrast, the newly formed N-terminal (Pn' residues) becomes more flexible only in rCMTI-III*, most likely due to lack of an interaction between the P1' residue and the scaffold in rCMTI-III. Thus, diminished flexibility gain of the Pn residues and, surprisingly, increased flexibility of the Pn' residues seem to facilitate the resynthesis of the P1-P1' bond, leading to a lower Khyd value.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardelt W., Laskowski M., Jr Effect of single amino acid replacements on the thermodynamics of the reactive site peptide bond hydrolysis in ovomucoid third domain. J Mol Biol. 1991 Aug 20;220(4):1041–1053. doi: 10.1016/0022-2836(91)90370-l. [DOI] [PubMed] [Google Scholar]
  2. Betz S. F. Disulfide bonds and the stability of globular proteins. Protein Sci. 1993 Oct;2(10):1551–1558. doi: 10.1002/pro.5560021002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Betz S. F., Marmorino J. L., Saunders A. J., Doyle D. F., Young G. B., Pielak G. J. Unusual effects of an engineered disulfide on global and local protein stability. Biochemistry. 1996 Jun 11;35(23):7422–7428. doi: 10.1021/bi9528558. [DOI] [PubMed] [Google Scholar]
  4. Bode W., Greyling H. J., Huber R., Otlewski J., Wilusz T. The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes. FEBS Lett. 1989 Jan 2;242(2):285–292. doi: 10.1016/0014-5793(89)80486-7. [DOI] [PubMed] [Google Scholar]
  5. Buck M., Boyd J., Redfield C., MacKenzie D. A., Jeenes D. J., Archer D. B., Dobson C. M. Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry. 1995 Mar 28;34(12):4041–4055. doi: 10.1021/bi00012a023. [DOI] [PubMed] [Google Scholar]
  6. Cai M., Gong Y., Prakash O., Krishnamoorthi R. Reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor-V: function, thermodynamic stability, and NMR solution structure. Biochemistry. 1995 Sep 26;34(38):12087–12094. doi: 10.1021/bi00038a001. [DOI] [PubMed] [Google Scholar]
  7. Cai M., Huang Y., Prakash O., Wen L., Dunkelbarger S. P., Huang J. K., Liu J., Krishnamoorthi R. Differential modulation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-catalyzed hydrolysis and NMR spectroscopy. Biochemistry. 1996 Apr 16;35(15):4784–4794. doi: 10.1021/bi953038a. [DOI] [PubMed] [Google Scholar]
  8. Fitter J., Lechner R. E., Buldt G., Dencher N. A. Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7600–7605. doi: 10.1073/pnas.93.15.7600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujinaga M., Read R. J., Sielecki A., Ardelt W., Laskowski M., Jr, James M. N. Refined crystal structure of the molecular complex of Streptomyces griseus protease B, a serine protease, with the third domain of the ovomucoid inhibitor from turkey. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4868–4872. doi: 10.1073/pnas.79.16.4868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hayashi K., Takehisa T., Hamato N., Takano R., Hara S., Miyata T., Kato H. Inhibition of serine proteases of the blood coagulation system by squash family protease inhibitors. J Biochem. 1994 Nov;116(5):1013–1018. doi: 10.1093/oxfordjournals.jbchem.a124621. [DOI] [PubMed] [Google Scholar]
  11. Hinck A. P., Truckses D. M., Markley J. L. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein. Biochemistry. 1996 Aug 13;35(32):10328–10338. doi: 10.1021/bi960309o. [DOI] [PubMed] [Google Scholar]
  12. Hojima Y., Pierce J. V., Pisano J. J. Pumpkin seed inhibitor of human factor XIIa (activated Hageman factor) and bovine trypsin. Biochemistry. 1982 Aug 3;21(16):3741–3746. doi: 10.1021/bi00259a003. [DOI] [PubMed] [Google Scholar]
  13. Karplus M. Internal dynamics of proteins. Methods Enzymol. 1986;131:283–307. doi: 10.1016/0076-6879(86)31046-2. [DOI] [PubMed] [Google Scholar]
  14. Karplus M., McCammon J. A. Dynamics of proteins: elements and function. Annu Rev Biochem. 1983;52:263–300. doi: 10.1146/annurev.bi.52.070183.001403. [DOI] [PubMed] [Google Scholar]
  15. Kay L. E., Muhandiram D. R., Farrow N. A., Aubin Y., Forman-Kay J. D. Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry. 1996 Jan 16;35(2):361–368. doi: 10.1021/bi9522312. [DOI] [PubMed] [Google Scholar]
  16. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  17. Kojima S., Kumagai I., Miura K. Requirement for a disulfide bridge near the reactive site of protease inhibitor SSI (Streptomyces subtilisin inhibitor) for its inhibitory action. J Mol Biol. 1993 Mar 20;230(2):395–399. doi: 10.1006/jmbi.1993.1157. [DOI] [PubMed] [Google Scholar]
  18. Krezel A. M., Darba P., Robertson A. D., Fejzo J., Macura S., Markley J. L. Solution structure of turkey ovomucoid third domain as determined from nuclear magnetic resonance data. J Mol Biol. 1994 Sep 23;242(3):203–214. doi: 10.1006/jmbi.1994.1573. [DOI] [PubMed] [Google Scholar]
  19. Krishnamoorthi R., Gong Y. X., Lin C. L., VanderVelde D. Two-dimensional NMR studies of squash family inhibitors. Sequence-specific proton assignments and secondary structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III. Biochemistry. 1992 Jan 28;31(3):898–904. doi: 10.1021/bi00118a036. [DOI] [PubMed] [Google Scholar]
  20. Krishnamoorthi R., Gong Y. X., Richardson M. A new protein inhibitor of trypsin and activated Hageman factor from pumpkin (Cucurbita maxima) seeds. FEBS Lett. 1990 Oct 29;273(1-2):163–167. doi: 10.1016/0014-5793(90)81075-y. [DOI] [PubMed] [Google Scholar]
  21. Krishnamoorthi R., Lin C. L., VanderVelde D. Structural consequences of the natural substitution, E9K, on reactive-site-hydrolyzed squash (Cucurbita maxima) trypsin inhibitor (CMTI), as studied by two-dimensional NMR. Biochemistry. 1992 Jun 2;31(21):4965–4969. doi: 10.1021/bi00136a007. [DOI] [PubMed] [Google Scholar]
  22. Krishnamoorthi R., Nemmers S., Tobias B. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III. FEBS Lett. 1992 Jun 15;304(2-3):149–152. doi: 10.1016/0014-5793(92)80607-i. [DOI] [PubMed] [Google Scholar]
  23. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  24. Lehle K., Kohnert U., Stern A., Popp F., Jaenicke R. Effect of disulfide bonds on the structure, function, and stability of the trypsin/tPA inhibitor from Erythrina caffra: site-directed mutagenesis, expression, and physiochemical characterization. Nat Biotechnol. 1996 Apr;14(4):476–480. doi: 10.1038/nbt0496-476. [DOI] [PubMed] [Google Scholar]
  25. Liu J., Prakash O., Cai M., Gong Y., Huang Y., Wen L., Wen J. J., Huang J. K., Krishnamoorthi R. Solution structure and backbone dynamics of recombinant Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy. Biochemistry. 1996 Feb 6;35(5):1516–1524. doi: 10.1021/bi952466d. [DOI] [PubMed] [Google Scholar]
  26. McWherter C. A., Walkenhorst W. F., Campbell E. J., Glover G. I. Novel inhibitors of human leukocyte elastase and cathepsin G. Sequence variants of squash seed protease inhibitor with altered protease selectivity. Biochemistry. 1989 Jul 11;28(14):5708–5714. doi: 10.1021/bi00440a002. [DOI] [PubMed] [Google Scholar]
  27. Mchaourab H. S., Oh K. J., Fang C. J., Hubbell W. L. Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry. 1997 Jan 14;36(2):307–316. doi: 10.1021/bi962114m. [DOI] [PubMed] [Google Scholar]
  28. Musil D., Bode W., Huber R., Laskowski M., Jr, Lin T. Y., Ardelt W. Refined X-ray crystal structures of the reactive site modified ovomucoid inhibitor third domains from silver pheasant (OMSVP3*) and from Japanese quail (OMJPQ3*). J Mol Biol. 1991 Aug 5;220(3):739–755. doi: 10.1016/0022-2836(91)90114-l. [DOI] [PubMed] [Google Scholar]
  29. Nicholson L. K., Kay L. E., Baldisseri D. M., Arango J., Young P. E., Bax A., Torchia D. A. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry. 1992 Jun 16;31(23):5253–5263. doi: 10.1021/bi00138a003. [DOI] [PubMed] [Google Scholar]
  30. Otlewski J., Krowarsch D. Squash inhibitor family of serine proteinases. Acta Biochim Pol. 1996;43(3):431–444. [PubMed] [Google Scholar]
  31. Otlewski J., Zbyryt T., Krokoszyńska I., Wilusz T. Inhibition of serine proteinases by squash inhibitors. Biol Chem Hoppe Seyler. 1990 Jul;371(7):589–594. doi: 10.1515/bchm3.1990.371.2.589. [DOI] [PubMed] [Google Scholar]
  32. Otlewski J., Zbyryt T. Single peptide bond hydrolysis/resynthesis in squash inhibitors of serine proteinases. 1. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine beta-trypsin. Biochemistry. 1994 Jan 11;33(1):200–207. doi: 10.1021/bi00167a026. [DOI] [PubMed] [Google Scholar]
  33. Papamokos E., Weber E., Bode W., Huber R., Empie M. W., Kato I., Laskowski M., Jr Crystallographic refinement of Japanese quail ovomucoid, a Kazal-type inhibitor, and model building studies of complexes with serine proteases. J Mol Biol. 1982 Jul 5;158(3):515–537. doi: 10.1016/0022-2836(82)90212-1. [DOI] [PubMed] [Google Scholar]
  34. Peng J. W., Wagner G. Investigation of protein motions via relaxation measurements. Methods Enzymol. 1994;239:563–596. doi: 10.1016/s0076-6879(94)39022-3. [DOI] [PubMed] [Google Scholar]
  35. Qasim M. A., Ganz P. J., Saunders C. W., Bateman K. S., James M. N., Laskowski M., Jr Interscaffolding additivity. Association of P1 variants of eglin c and of turkey ovomucoid third domain with serine proteinases. Biochemistry. 1997 Feb 18;36(7):1598–1607. doi: 10.1021/bi9620870. [DOI] [PubMed] [Google Scholar]
  36. Rosenfeld R., Vajda S., DeLisi C. Flexible docking and design. Annu Rev Biophys Biomol Struct. 1995;24:677–700. doi: 10.1146/annurev.bb.24.060195.003333. [DOI] [PubMed] [Google Scholar]
  37. Vajda S., Weng Z., Rosenfeld R., DeLisi C. Effect of conformational flexibility and solvation on receptor-ligand binding free energies. Biochemistry. 1994 Nov 29;33(47):13977–13988. doi: 10.1021/bi00251a004. [DOI] [PubMed] [Google Scholar]
  38. Walkenhorst W. F., Krezel A. M., Rhyu G. I., Markley J. L. Solution structure of reactive-site hydrolyzed turkey ovomucoid third domain by nuclear magnetic resonance and distance geometry methods. J Mol Biol. 1994 Sep 23;242(3):215–230. doi: 10.1006/jmbi.1994.1574. [DOI] [PubMed] [Google Scholar]
  39. Weber E., Papamokos E., Bode W., Huber R., Kato I., Laskowski M., Jr Crystallization, crystal structure analysis and molecular model of the third domain of Japanese quail ovomucoid, a Kazal type inhibitor. J Mol Biol. 1981 Jun 15;149(1):109–123. doi: 10.1016/0022-2836(81)90263-1. [DOI] [PubMed] [Google Scholar]
  40. Wen L., Kim S. S., Tinn T. T., Huang J. K., Krishnamoorthi R., Gong Y. X., Lwin Y. N., Kyin S. Chemical synthesis, molecular cloning, overexpression, and site-directed mutagenesis of the gene coding for pumpkin (Curcubita maxima) trypsin inhibitor CMTI-V. Protein Expr Purif. 1993 Jun;4(3):215–222. doi: 10.1006/prep.1993.1028. [DOI] [PubMed] [Google Scholar]
  41. Wen L., Lee I., Chen G., Huang J. K., Gong Y., Krishnamoorthi R. Changing the inhibitory specificity and function of Cucurbita maxima trypsin inhibitor-V by site-directed mutagenesis. Biochem Biophys Res Commun. 1995 Feb 27;207(3):897–902. doi: 10.1006/bbrc.1995.1270. [DOI] [PubMed] [Google Scholar]
  42. Wieczorek M., Otlewski J., Cook J., Parks K., Leluk J., Wilimowska-Pelc A., Polanowski A., Wilusz T., Laskowski M., Jr The squash family of serine proteinase inhibitors. Amino acid sequences and association equilibrium constants of inhibitors from squash, summer squash, zucchini, and cucumber seeds. Biochem Biophys Res Commun. 1985 Jan 31;126(2):646–652. doi: 10.1016/0006-291x(85)90233-5. [DOI] [PubMed] [Google Scholar]
  43. Wynn R., Laskowski M., Jr Inhibition of human beta-factor XIIa by squash family serine proteinase inhibitors. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1406–1410. doi: 10.1016/0006-291x(90)91023-l. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES