Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Jan;7(1):193–200. doi: 10.1002/pro.5560070120

Conformation, stability, and active-site cysteine titrations of Escherichia coli D26A thioredoxin probed by Raman spectroscopy.

S Vohník 1, C Hanson 1, R Tuma 1, J A Fuchs 1, C Woodward 1, G J Thomas Jr 1
PMCID: PMC2143819  PMID: 9514274

Abstract

The active-site cysteines (Cys 32 and Cys 35) of Escherichia coli thioredoxin are oxidized to a disulfide bridge when the protein mediates substrate reduction. In reduced thioredoxin, Cys 32 and Cys 35 are characterized by abnormally low pKa values. A conserved side chain, Asp 26, which is sterically accessible to the active site, is also essential to oxidoreductase activity. pKa values governing cysteine thiol-thiolate equilibria in the mutant thioredoxin, D26A, have been determined by direct Raman spectrophotometric measurement of sulfhydryl ionizations. The results indicate that, in D26A thioredoxin, both sulfhydryls titrate with apparent pKa values of 7.5+/-0.2, close to values measured previously for wild-type thioredoxin. Sulfhydryl Raman markers of D26A and wild-type thioredoxin also exhibit similar band shapes, consistent with minimal differences in respective cysteine side-chain conformations and sulfhydryl interactions. The results imply that neither the Cys 32 nor Cys 35 SH donor is hydrogen bonded directly to Asp 26 in the wild-type protein. Additionally, the thioredoxin main-chain conformation is largely conserved with D26A mutation. Conversely, the mutation perturbs Raman bands diagnostic of tryptophan (Trp 28 and Trp 31) orientations and leads to differences in their pH dependencies, implying local conformational differences near the active site. We conclude that, although the carboxyl side chain of Asp 26 neither interacts directly with active-site cysteines nor is responsible for their abnormally low pKa values, the aspartate side chain may play a role in determining the conformation of the enzyme active site.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aubrey K. L., Thomas G. J., Jr Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation. Biophys J. 1991 Dec;60(6):1337–1349. doi: 10.1016/S0006-3495(91)82171-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandekar J. Amide modes and protein conformation. Biochim Biophys Acta. 1992 Apr 8;1120(2):123–143. doi: 10.1016/0167-4838(92)90261-b. [DOI] [PubMed] [Google Scholar]
  3. Chandrasekhar K., Campbell A. P., Jeng M. F., Holmgren A., Dyson H. J. Effect of disulfide bridge formation on the NMR spectrum of a protein: studies on oxidized and reduced Escherichia coli thioredoxin. J Biomol NMR. 1994 May;4(3):411–432. doi: 10.1007/BF00179349. [DOI] [PubMed] [Google Scholar]
  4. Dyson H. J., Gippert G. P., Case D. A., Holmgren A., Wright P. E. Three-dimensional solution structure of the reduced form of Escherichia coli thioredoxin determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1990 May 1;29(17):4129–4136. doi: 10.1021/bi00469a016. [DOI] [PubMed] [Google Scholar]
  5. Dyson H. J., Jeng M. F., Tennant L. L., Slaby I., Lindell M., Cui D. S., Kuprin S., Holmgren A. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry. 1997 Mar 4;36(9):2622–2636. doi: 10.1021/bi961801a. [DOI] [PubMed] [Google Scholar]
  6. Dyson H. J., Tennant L. L., Holmgren A. Proton-transfer effects in the active-site region of Escherichia coli thioredoxin using two-dimensional 1H NMR. Biochemistry. 1991 Apr 30;30(17):4262–4268. doi: 10.1021/bi00231a023. [DOI] [PubMed] [Google Scholar]
  7. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi: 10.1146/annurev.bi.54.070185.001321. [DOI] [PubMed] [Google Scholar]
  8. Jeng M. F., Campbell A. P., Begley T., Holmgren A., Case D. A., Wright P. E., Dyson H. J. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure. 1994 Sep 15;2(9):853–868. doi: 10.1016/s0969-2126(94)00086-7. [DOI] [PubMed] [Google Scholar]
  9. Jeng M. F., Dyson H. J. Direct measurement of the aspartic acid 26 pKa for reduced Escherichia coli thioredoxin by 13C NMR. Biochemistry. 1996 Jan 9;35(1):1–6. doi: 10.1021/bi952404n. [DOI] [PubMed] [Google Scholar]
  10. Kallis G. B., Holmgren A. Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem. 1980 Nov 10;255(21):10261–10265. [PubMed] [Google Scholar]
  11. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  12. Kortemme T., Creighton T. E. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol. 1995 Nov 10;253(5):799–812. doi: 10.1006/jmbi.1995.0592. [DOI] [PubMed] [Google Scholar]
  13. Langsetmo K., Fuchs J. A., Woodward C., Sharp K. A. Linkage of thioredoxin stability to titration of ionizable groups with perturbed pKa. Biochemistry. 1991 Jul 30;30(30):7609–7614. doi: 10.1021/bi00244a033. [DOI] [PubMed] [Google Scholar]
  14. LeMaster D. M. Structural determinants of the catalytic reactivity of the buried cysteine of Escherichia coli thioredoxin. Biochemistry. 1996 Nov 26;35(47):14876–14881. doi: 10.1021/bi961607o. [DOI] [PubMed] [Google Scholar]
  15. Li H., Hanson C., Fuchs J. A., Woodward C., Thomas G. J., Jr Determination of the pKa values of active-center cysteines, cysteines-32 and -35, in Escherichia coli thioredoxin by Raman spectroscopy. Biochemistry. 1993 Jun 8;32(22):5800–5808. doi: 10.1021/bi00073a012. [DOI] [PubMed] [Google Scholar]
  16. Reutimann H., Straub B., Luisi P. L., Holmgren A. A conformational study of thioredoxin and its tryptic fragments. J Biol Chem. 1981 Jul 10;256(13):6796–6803. [PubMed] [Google Scholar]
  17. Takahashi N., Creighton T. E. On the reactivity and ionization of the active site cysteine residues of Escherichia coli thioredoxin. Biochemistry. 1996 Jun 25;35(25):8342–8353. doi: 10.1021/bi960465v. [DOI] [PubMed] [Google Scholar]
  18. Tuma R., Vohník S., Li H., Thomas G. J., Jr Cysteine conformation and sulfhydryl interactions in proteins and viruses. 3. Quantitative measurement of the Raman S-H band intensity and frequency. Biophys J. 1993 Sep;65(3):1066–1072. doi: 10.1016/S0006-3495(93)81172-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilson N. A., Barbar E., Fuchs J. A., Woodward C. Aspartic acid 26 in reduced Escherichia coli thioredoxin has a pKa > 9. Biochemistry. 1995 Jul 18;34(28):8931–8939. doi: 10.1021/bi00028a001. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES