Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Oct;7(10):2156–2163. doi: 10.1002/pro.5560071013

Structural characterization of the entire 1.3S subunit of transcarboxylase from Propionibacterium shermanii.

D V Reddy 1, S Rothemund 1, B C Shenoy 1, P R Carey 1, F D Sönnichsen 1
PMCID: PMC2143830  PMID: 9792103

Abstract

Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate in two partial reactions. Within the multisubunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier. The 1.3S is a 123-amino acid polypeptide (12.6 kDa), to which biotin is covalently attached at Lys 89. We have expressed 1.3S in Escherichia coli with uniform 15N labeling. The backbone structure and dynamics of the protein have been characterized in aqueous solution by three-dimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy. The secondary structure elements in the protein were identified based on NOE information, secondary chemical shifts, homonuclear 3J(HNHalpha) coupling constants, and amide proton exchange data. The protein contains a predominantly disordered N-terminal half, while the C-terminal half is folded into a compact domain comprising eight beta-strands connected by short loops and turns. The topology of the C-terminal domain is consistent with the fold found in both carboxyl carrier and lipoyl domains, to which this domain has approximately 26-30% sequence similarity.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Athappilly F. K., Hendrickson W. A. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing. Structure. 1995 Dec 15;3(12):1407–1419. doi: 10.1016/s0969-2126(01)00277-5. [DOI] [PubMed] [Google Scholar]
  2. Berg A., Vervoort J., de Kok A. Solution structure of the lipoyl domain of the 2-oxoglutarate dehydrogenase complex from Azotobacter vinelandii. J Mol Biol. 1996 Aug 23;261(3):432–442. doi: 10.1006/jmbi.1996.0474. [DOI] [PubMed] [Google Scholar]
  3. Berg A., Vervoort J., de Kok A. Three-dimensional structure in solution of the N-terminal lipoyl domain of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Eur J Biochem. 1997 Mar 1;244(2):352–360. doi: 10.1111/j.1432-1033.1997.00352.x. [DOI] [PubMed] [Google Scholar]
  4. Berg A., de Kok A. 2-Oxo acid dehydrogenase multienzyme complexes. The central role of the lipoyl domain. Biol Chem. 1997 Jul;378(7):617–634. [PubMed] [Google Scholar]
  5. Dardel F., Davis A. L., Laue E. D., Perham R. N. Three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J Mol Biol. 1993 Feb 20;229(4):1037–1048. doi: 10.1006/jmbi.1993.1103. [DOI] [PubMed] [Google Scholar]
  6. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  7. Farrow N. A., Zhang O., Forman-Kay J. D., Kay L. E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J Biomol NMR. 1994 Sep;4(5):727–734. doi: 10.1007/BF00404280. [DOI] [PubMed] [Google Scholar]
  8. Green J. D., Laue E. D., Perham R. N., Ali S. T., Guest J. R. Three-dimensional structure of a lipoyl domain from the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol. 1995 Apr 28;248(2):328–343. doi: 10.1016/s0022-2836(95)80054-9. [DOI] [PubMed] [Google Scholar]
  9. Howard M. J., Fuller C., Broadhurst R. W., Perham R. N., Tang J. G., Quinn J., Diamond A. G., Yeaman S. J. Three-dimensional structure of the major autoantigen in primary biliary cirrhosis. Gastroenterology. 1998 Jul;115(1):139–146. doi: 10.1016/s0016-5085(98)70375-0. [DOI] [PubMed] [Google Scholar]
  10. Kay L. E. Field gradient techniques in NMR spectroscopy. Curr Opin Struct Biol. 1995 Oct;5(5):674–681. doi: 10.1016/0959-440x(95)80061-1. [DOI] [PubMed] [Google Scholar]
  11. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  12. Kumar G. K., Bahler C. R., Wood H. G., Merrifield R. B. The amino acid sequences of the biotinyl subunit essential for the association of transcarboxylase. J Biol Chem. 1982 Nov 25;257(22):13828–13834. [PubMed] [Google Scholar]
  13. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  14. Perham R. N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry. 1991 Sep 3;30(35):8501–8512. doi: 10.1021/bi00099a001. [DOI] [PubMed] [Google Scholar]
  15. Reddy D. V., Shenoy B. C., Carey P. R., Sönnichsen F. D. Absence of observable biotin-protein interactions in the 1.3S subunit of transcarboxylase: an NMR study. Biochemistry. 1997 Dec 2;36(48):14676–14682. doi: 10.1021/bi971674y. [DOI] [PubMed] [Google Scholar]
  16. Ricaud P. M., Howard M. J., Roberts E. L., Broadhurst R. W., Perham R. N. Three-dimensional structure of the lipoyl domain from the dihydrolipoyl succinyltransferase component of the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli. J Mol Biol. 1996 Nov 22;264(1):179–190. doi: 10.1006/jmbi.1996.0632. [DOI] [PubMed] [Google Scholar]
  17. Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
  18. Shenoy B. C., Magner W. J., Kumar G. K., Phillips N. F., Haase F. C., Samols D. The nonbiotinylated form of the 1.3 s subunit of transcarboxylase binds to avidin (monomeric)-agarose: purification and separation from the biotinylated 1.3 S subunit. Protein Expr Purif. 1993 Feb;4(1):85–94. doi: 10.1006/prep.1993.1013. [DOI] [PubMed] [Google Scholar]
  19. Shenoy B. C., Wood H. G. Purification and properties of the synthetase catalyzing the biotination of the aposubunit of transcarboxylase from Propionibacterium shermanii. FASEB J. 1988 May;2(8):2396–2401. doi: 10.1096/fasebj.2.8.3360240. [DOI] [PubMed] [Google Scholar]
  20. Toh H., Kondo H., Tanabe T. Molecular evolution of biotin-dependent carboxylases. Eur J Biochem. 1993 Aug 1;215(3):687–696. doi: 10.1111/j.1432-1033.1993.tb18080.x. [DOI] [PubMed] [Google Scholar]
  21. Wood H. G., Kumar G. K. Transcarboxylase: its quaternary structure and the role of the biotinyl subunit in the assembly of the enzyme and in catalysis. Ann N Y Acad Sci. 1985;447:1–22. doi: 10.1111/j.1749-6632.1985.tb18422.x. [DOI] [PubMed] [Google Scholar]
  22. Wood H. G. The anatomy of transcarboxylase and the role of its subunits. CRC Crit Rev Biochem. 1979 Dec;7(2):143–160. doi: 10.3109/10409237909105430. [DOI] [PubMed] [Google Scholar]
  23. Zhang O., Kay L. E., Olivier J. P., Forman-Kay J. D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845–858. doi: 10.1007/BF00398413. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES