Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Oct;7(10):2200–2209. doi: 10.1002/pro.5560071018

Delineation of an evolutionary salvage pathway by compensatory mutations of a defective lysozyme.

M Jucovic 1, A R Poteete 1
PMCID: PMC2143835  PMID: 9792108

Abstract

Model-free approaches (random mutagenesis, DNA shuffling) in combination with more "rational," three-dimensional information-guided randomization have been used for directed evolution of lysozyme activity in a defective T4 lysozyme mutant. A specialized lysozyme cloning vector phage, derived from phage lambda, depends upon T4 lysozyme function for its ability to form plaques. The substitution W138P in T4 lysozyme totally abolishes its plaque-forming ability. Compensating mutations in W138P T4 lysozyme after sequential random mutagenesis of the whole gene as well as after targeted randomization of residues in the vicinity of Trp138 were selected. In a second stage, these mutations were randomly recombined by the recombinatorial PCR method of DNA shuffling. Shuffled and selected W138P T4 lysozyme variants provide the hybrid lambda phage with sufficient lysozyme activity to produce normal-size plaques, even at elevated temperature (42 degrees C). The individual mutations with the highest compensatory information for W138P repair are the substitutions A146F and A146M, selected after targeted randomization of three residues in the neighborhood of Trp138 by combinatorial mutagenesis. The best evolved W138P T4 lysozymes, however, accumulated mutations originating from both randomly mutagenized as well as target-randomized variants.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alber T., Sun D. P., Nye J. A., Muchmore D. C., Matthews B. W. Temperature-sensitive mutations of bacteriophage T4 lysozyme occur at sites with low mobility and low solvent accessibility in the folded protein. Biochemistry. 1987 Jun 30;26(13):3754–3758. doi: 10.1021/bi00387a002. [DOI] [PubMed] [Google Scholar]
  2. Baldwin E., Xu J., Hajiseyedjavadi O., Baase W. A., Matthews B. W. Thermodynamic and structural compensation in "size-switch" core repacking variants of bacteriophage T4 lysozyme. J Mol Biol. 1996 Jun 14;259(3):542–559. doi: 10.1006/jmbi.1996.0338. [DOI] [PubMed] [Google Scholar]
  3. Bouvier S. E., Poteete A. R. Second-site reversion of a structural defect in bacteriophage T4 lysozyme. FASEB J. 1996 Jan;10(1):159–163. doi: 10.1096/fasebj.10.1.8566537. [DOI] [PubMed] [Google Scholar]
  4. Brent R., Ptashne M. Mechanism of action of the lexA gene product. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4204–4208. doi: 10.1073/pnas.78.7.4204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crameri A., Cwirla S., Stemmer W. P. Construction and evolution of antibody-phage libraries by DNA shuffling. Nat Med. 1996 Jan;2(1):100–102. doi: 10.1038/nm0196-100. [DOI] [PubMed] [Google Scholar]
  6. Crameri A., Dawes G., Rodriguez E., Jr, Silver S., Stemmer W. P. Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol. 1997 May;15(5):436–438. doi: 10.1038/nbt0597-436. [DOI] [PubMed] [Google Scholar]
  7. Crameri A., Raillard S. A., Bermudez E., Stemmer W. P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature. 1998 Jan 15;391(6664):288–291. doi: 10.1038/34663. [DOI] [PubMed] [Google Scholar]
  8. Dao-pin S., Söderlind E., Baase W. A., Wozniak J. A., Sauer U., Matthews B. W. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J Mol Biol. 1991 Oct 5;221(3):873–887. doi: 10.1016/0022-2836(91)80181-s. [DOI] [PubMed] [Google Scholar]
  9. Elwell M. L., Schellman J. A. Stability of phage T4 lysozymes. II. Unfolding with guanidinium chloride. Biochim Biophys Acta. 1979 Oct 24;580(2):327–338. doi: 10.1016/0005-2795(79)90145-4. [DOI] [PubMed] [Google Scholar]
  10. Jones D. H., Howard B. H. A rapid method for site-specific mutagenesis and directional subcloning by using the polymerase chain reaction to generate recombinant circles. Biotechniques. 1990 Feb;8(2):178–183. [PubMed] [Google Scholar]
  11. Kast P., Hilvert D. 3D structural information as a guide to protein engineering using genetic selection. Curr Opin Struct Biol. 1997 Aug;7(4):470–479. doi: 10.1016/s0959-440x(97)80109-1. [DOI] [PubMed] [Google Scholar]
  12. Kim B., Hathaway T. R., Loeb L. A. Human immunodeficiency virus reverse transcriptase. Functional mutants obtained by random mutagenesis coupled with genetic selection in Escherichia coli. J Biol Chem. 1996 Mar 1;271(9):4872–4878. doi: 10.1074/jbc.271.9.4872. [DOI] [PubMed] [Google Scholar]
  13. Knight J. A., Hardy L. W., Rennell D., Herrick D., Poteete A. R. Mutations in an upstream regulatory sequence that increase expression of the bacteriophage T4 lysozyme gene. J Bacteriol. 1987 Oct;169(10):4630–4636. doi: 10.1128/jb.169.10.4630-4636.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lanzer M., Bujard H. Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8973–8977. doi: 10.1073/pnas.85.23.8973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matthews B. W. Studies on protein stability with T4 lysozyme. Adv Protein Chem. 1995;46:249–278. doi: 10.1016/s0065-3233(08)60337-x. [DOI] [PubMed] [Google Scholar]
  16. Moore J. C., Jin H. M., Kuchner O., Arnold F. H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J Mol Biol. 1997 Sep 26;272(3):336–347. doi: 10.1006/jmbi.1997.1252. [DOI] [PubMed] [Google Scholar]
  17. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pjura P. E., Matsumura M., Wozniak J. A., Matthews B. W. Structure of a thermostable disulfide-bridge mutant of phage T4 lysozyme shows that an engineered cross-link in a flexible region does not increase the rigidity of the folded protein. Biochemistry. 1990 Mar 13;29(10):2592–2598. doi: 10.1021/bi00462a023. [DOI] [PubMed] [Google Scholar]
  19. Pjura P., Matsumura M., Baase W. A., Matthews B. W. Development of an in vivo method to identify mutants of phage T4 lysozyme of enhanced thermostability. Protein Sci. 1993 Dec;2(12):2217–2225. doi: 10.1002/pro.5560021221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Poteete A. R., Rennell D., Bouvier S. E., Hardy L. W. Alteration of T4 lysozyme structure by second-site reversion of deleterious mutations. Protein Sci. 1997 Nov;6(11):2418–2425. doi: 10.1002/pro.5560061115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poteete A. R., Sun D. P., Nicholson H., Matthews B. W. Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry. 1991 Feb 5;30(5):1425–1432. doi: 10.1021/bi00219a037. [DOI] [PubMed] [Google Scholar]
  22. STREISINGER G., MUKAI F., DREYER W. J., MILLER B., HORIUCHI S. Mutations affecting the lysozyme of phage T4. Cold Spring Harb Symp Quant Biol. 1961;26:25–30. doi: 10.1101/sqb.1961.026.01.007. [DOI] [PubMed] [Google Scholar]
  23. Shao Z., Arnold F. H. Engineering new functions and altering existing functions. Curr Opin Struct Biol. 1996 Aug;6(4):513–518. doi: 10.1016/s0959-440x(96)80117-5. [DOI] [PubMed] [Google Scholar]
  24. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
  25. Tsugita A., Inouye M. Purification of bacteriophage T4 lysozyme. J Biol Chem. 1968 Jan 25;243(2):391–397. [PubMed] [Google Scholar]
  26. Warren M. S., Benkovic S. J. Combinatorial manipulation of three key active site residues in glycinamide ribonucleotide transformylase. Protein Eng. 1997 Jan;10(1):63–68. doi: 10.1093/protein/10.1.63. [DOI] [PubMed] [Google Scholar]
  27. Weaver L. H., Matthews B. W. Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution. J Mol Biol. 1987 Jan 5;193(1):189–199. doi: 10.1016/0022-2836(87)90636-x. [DOI] [PubMed] [Google Scholar]
  28. Zhang J. H., Dawes G., Stemmer W. P. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4504–4509. doi: 10.1073/pnas.94.9.4504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zhang X. J., Baase W. A., Shoichet B. K., Wilson K. P., Matthews B. W. Enhancement of protein stability by the combination of point mutations in T4 lysozyme is additive. Protein Eng. 1995 Oct;8(10):1017–1022. doi: 10.1093/protein/8.10.1017. [DOI] [PubMed] [Google Scholar]
  30. Zhao H., Arnold F. H. Combinatorial protein design: strategies for screening protein libraries. Curr Opin Struct Biol. 1997 Aug;7(4):480–485. doi: 10.1016/s0959-440x(97)80110-8. [DOI] [PubMed] [Google Scholar]
  31. Zhao H., Arnold F. H. Functional and nonfunctional mutations distinguished by random recombination of homologous genes. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7997–8000. doi: 10.1073/pnas.94.15.7997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES