Abstract
We previously identified and characterized amino acid substitutions in a loop connecting helix I to strand B, the alphaI/betaB loop, of the N-domain that are critical for in vivo folding of the maltose-binding protein (MalE31). The tertiary context-dependence of this mutation in MalE folding was assessed by probing the tolerance of an equivalent alphabeta loop of the C-domain to the same amino acid substitutions (MalE219). Moving the loop mutation from the N- to the C-domain eliminated the in vivo misfolding step that led to the formation of inclusion bodies. In vitro, both loop variants exhibited an important decrease of stability, but their intrinsic tendency to aggregate was well correlated with their periplasmic fates in Escherichia coli. Furthermore, the noncoincidence of the unfolding and refolding transition curves and increase of light scattering during the refolding of MalE31 indicate that a competing off-pathway reaction could occurs on the folding pathway of this variant. These results strongly support the notion that the formation of super-secondary structures of the N-domain is a rate-limiting step in the folding pathway of MalE.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker D., Agard D. A. Kinetics versus thermodynamics in protein folding. Biochemistry. 1994 Jun 21;33(24):7505–7509. doi: 10.1021/bi00190a002. [DOI] [PubMed] [Google Scholar]
- Betton J. M., Boscus D., Missiakas D., Raina S., Hofnung M. Probing the structural role of an alpha beta loop of maltose-binding protein by mutagenesis: heat-shock induction by loop variants of the maltose-binding protein that form periplasmic inclusion bodies. J Mol Biol. 1996 Sep 20;262(2):140–150. doi: 10.1006/jmbi.1996.0504. [DOI] [PubMed] [Google Scholar]
- Betton J. M., Hofnung M. Folding of a mutant maltose-binding protein of Escherichia coli which forms inclusion bodies. J Biol Chem. 1996 Apr 5;271(14):8046–8052. doi: 10.1074/jbc.271.14.8046. [DOI] [PubMed] [Google Scholar]
- Betton J. M., Hofnung M. In vivo assembly of active maltose binding protein from independently exported protein fragments. EMBO J. 1994 Mar 1;13(5):1226–1234. doi: 10.1002/j.1460-2075.1994.tb06372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betton J. M., Sassoon N., Hofnung M., Laurent M. Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli. J Biol Chem. 1998 Apr 10;273(15):8897–8902. doi: 10.1074/jbc.273.15.8897. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
- Chun S. Y., Strobel S., Bassford P., Jr, Randall L. L. Folding of maltose-binding protein. Evidence for the identity of the rate-determining step in vivo and in vitro. J Biol Chem. 1993 Oct 5;268(28):20855–20862. [PubMed] [Google Scholar]
- Cover W. H., Ryan J. P., Bassford P. J., Jr, Walsh K. A., Bollinger J., Randall L. L. Suppression of a signal sequence mutation by an amino acid substitution in the mature portion of the maltose-binding protein. J Bacteriol. 1987 May;169(5):1794–1800. doi: 10.1128/jb.169.5.1794-1800.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Débarbouillé M., Shuman H. A., Silhavy T. J., Schwartz M. Dominant constitutive mutations in malT, the positive regulator gene of the maltose regulon in Escherichia coli. J Mol Biol. 1978 Sep 15;124(2):359–371. doi: 10.1016/0022-2836(78)90304-2. [DOI] [PubMed] [Google Scholar]
- Edwards M. S., Sternberg J. E., Thornton J. M. Structural and sequence patterns in the loops of beta alpha beta units. Protein Eng. 1987 Jun;1(3):173–181. doi: 10.1093/protein/1.3.173. [DOI] [PubMed] [Google Scholar]
- Ferenci T., Klotz U. Affinity chromatographic isolation of the periplasmic maltose binding protein of Escherichia coli. FEBS Lett. 1978 Oct 15;94(2):213–217. doi: 10.1016/0014-5793(78)80940-5. [DOI] [PubMed] [Google Scholar]
- Goldberg M. E., Rudolph R., Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 1991 Mar 19;30(11):2790–2797. doi: 10.1021/bi00225a008. [DOI] [PubMed] [Google Scholar]
- Haase-Pettingell C. A., King J. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J Biol Chem. 1988 Apr 5;263(10):4977–4983. [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Missiakas D., Betton J. M., Raina S. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol. 1996 Aug;21(4):871–884. doi: 10.1046/j.1365-2958.1996.561412.x. [DOI] [PubMed] [Google Scholar]
- Mitraki A., Betton J. M., Desmadril M., Yon J. M. Quasi-irreversibility in the unfolding-refolding transition of phosphoglycerate kinase induced by guanidine hydrochloride. Eur J Biochem. 1987 Feb 16;163(1):29–34. doi: 10.1111/j.1432-1033.1987.tb10732.x. [DOI] [PubMed] [Google Scholar]
- Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
- Nikaido H. Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett. 1994 Jun 6;346(1):55–58. doi: 10.1016/0014-5793(94)00315-7. [DOI] [PubMed] [Google Scholar]
- Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
- Sharff A. J., Rodseth L. E., Spurlino J. C., Quiocho F. A. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry. 1992 Nov 10;31(44):10657–10663. doi: 10.1021/bi00159a003. [DOI] [PubMed] [Google Scholar]
- Shuman H. A. Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. J Biol Chem. 1982 May 25;257(10):5455–5461. [PubMed] [Google Scholar]
- Sinclair J. F., Ziegler M. M., Baldwin T. O. Kinetic partitioning during protein folding yields multiple native states. Nat Struct Biol. 1994 May;1(5):320–326. doi: 10.1038/nsb0594-320. [DOI] [PubMed] [Google Scholar]
- Song T., Park C. Effect of folding on the export of ribose-binding protein studied with the genetically isolated suppressors for the signal sequence mutation. J Mol Biol. 1995 Oct 20;253(2):304–312. doi: 10.1006/jmbi.1995.0554. [DOI] [PubMed] [Google Scholar]
- Speed M. A., Wang D. I., King J. Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci. 1995 May;4(5):900–908. doi: 10.1002/pro.5560040509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetzel R. Mutations and off-pathway aggregation of proteins. Trends Biotechnol. 1994 May;12(5):193–198. doi: 10.1016/0167-7799(94)90082-5. [DOI] [PubMed] [Google Scholar]
- Wickner W., Leonard M. R. Escherichia coli preprotein translocase. J Biol Chem. 1996 Nov 22;271(47):29514–29516. doi: 10.1074/jbc.271.47.29514. [DOI] [PubMed] [Google Scholar]