Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Oct;7(10):2223–2232. doi: 10.1002/pro.5560071021

Phage P22 tailspike protein: removal of head-binding domain unmasks effects of folding mutations on native-state thermal stability.

S Miller 1, B Schuler 1, R Seckler 1
PMCID: PMC2143837  PMID: 9792111

Abstract

A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baxa U., Steinbacher S., Miller S., Weintraub A., Huber R., Seckler R. Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide. Biophys J. 1996 Oct;71(4):2040–2048. doi: 10.1016/S0006-3495(96)79402-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beissinger M., Lee S. C., Steinbacher S., Reinemer P., Huber R., Yu M. H., Seckler R. Mutations that stabilize folding intermediates of phage P22 tailspike protein: folding in vivo and in vitro, stability, and structural context. J Mol Biol. 1995 May 26;249(1):185–194. doi: 10.1006/jmbi.1995.0288. [DOI] [PubMed] [Google Scholar]
  3. Betts S., Haase-Pettingell C., King J. Mutational effects on inclusion body formation. Adv Protein Chem. 1997;50:243–264. doi: 10.1016/s0065-3233(08)60323-x. [DOI] [PubMed] [Google Scholar]
  4. Brunschier R., Danner M., Seckler R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J Biol Chem. 1993 Feb 5;268(4):2767–2772. [PubMed] [Google Scholar]
  5. Chen B., King J. Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry. 1991 Jun 25;30(25):6260–6269. doi: 10.1021/bi00239a026. [DOI] [PubMed] [Google Scholar]
  6. Clark A. C., Raso S. W., Sinclair J. F., Ziegler M. M., Chaffotte A. F., Baldwin T. O. Kinetic mechanism of luciferase subunit folding and assembly. Biochemistry. 1997 Feb 18;36(7):1891–1899. doi: 10.1021/bi962477m. [DOI] [PubMed] [Google Scholar]
  7. Danner M., Fuchs A., Miller S., Seckler R. Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain. Eur J Biochem. 1993 Aug 1;215(3):653–661. doi: 10.1111/j.1432-1033.1993.tb18076.x. [DOI] [PubMed] [Google Scholar]
  8. Danner M., Seckler R. Mechanism of phage P22 tailspike protein folding mutations. Protein Sci. 1993 Nov;2(11):1869–1881. doi: 10.1002/pro.5560021109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  10. Fane B., King J. Identification of sites influencing the folding and subunit assembly of the P22 tailspike polypeptide chain using nonsense mutations. Genetics. 1987 Oct;117(2):157–171. doi: 10.1093/genetics/117.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fane B., Villafane R., Mitraki A., King J. Identification of global suppressors for temperature-sensitive folding mutations of the P22 tailspike protein. J Biol Chem. 1991 Jun 25;266(18):11640–11648. [PubMed] [Google Scholar]
  12. Fuchs A., Seiderer C., Seckler R. In vitro folding pathway of phage P22 tailspike protein. Biochemistry. 1991 Jul 2;30(26):6598–6604. doi: 10.1021/bi00240a032. [DOI] [PubMed] [Google Scholar]
  13. Goldenberg D. P., King J. Temperature-sensitive mutants blocked in the folding or subunit of the bacteriophage P22 tail spike protein. II. Active mutant proteins matured at 30 degrees C. J Mol Biol. 1981 Feb 5;145(4):633–651. doi: 10.1016/0022-2836(81)90307-7. [DOI] [PubMed] [Google Scholar]
  14. Goldenberg D., King J. Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of bacteriophage P22. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3403–3407. doi: 10.1073/pnas.79.11.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haase-Pettingell C. A., King J. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J Biol Chem. 1988 Apr 5;263(10):4977–4983. [PubMed] [Google Scholar]
  16. Ibel K., May R. P., Kirschner K., Szadkowski H., Mascher E., Lundahl P. Protein-decorated micelle structure of sodium-dodecyl-sulfate--protein complexes as determined by neutron scattering. Eur J Biochem. 1990 Jun 20;190(2):311–318. doi: 10.1111/j.1432-1033.1990.tb15578.x. [DOI] [PubMed] [Google Scholar]
  17. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  18. Jaenicke R., Seckler R. Protein misassembly in vitro. Adv Protein Chem. 1997;50:1–59. doi: 10.1016/s0065-3233(08)60318-6. [DOI] [PubMed] [Google Scholar]
  19. Kumar T. K., Gopalakrishna K., Prasad V. V., Pandit M. W. Multiple bands on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels of proteins due to intermolecular disulfide cross-linking. Anal Biochem. 1993 Sep;213(2):226–228. doi: 10.1006/abio.1993.1413. [DOI] [PubMed] [Google Scholar]
  20. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  21. Lee S. C., Koh H., Yu M. H. Molecular properties of global suppressors of temperature-sensitive folding mutations in P22 tailspike endorhamnosidase. J Biol Chem. 1991 Dec 5;266(34):23191–23196. [PubMed] [Google Scholar]
  22. Lee S. C., Yu M. H. Side-chain specificity at three temperature-sensitive folding mutation sites of P22 tailspike protein. Biochem Biophys Res Commun. 1997 Apr 28;233(3):857–862. doi: 10.1006/bbrc.1997.6566. [DOI] [PubMed] [Google Scholar]
  23. Mattice W. L., Riser J. M., Clark D. S. Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry. 1976 Sep 21;15(19):4264–4272. doi: 10.1021/bi00664a020. [DOI] [PubMed] [Google Scholar]
  24. McPherson A., Jr The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis. Methods Biochem Anal. 1976;23(0):249–345. doi: 10.1002/9780470110430.ch4. [DOI] [PubMed] [Google Scholar]
  25. McPherson A., Koszelak S., Axelrod H., Day J., Williams R., Robinson L., McGrath M., Cascio D. An experiment regarding crystallization of soluble proteins in the presence of beta-octyl glucoside. J Biol Chem. 1986 Feb 5;261(4):1969–1975. [PubMed] [Google Scholar]
  26. Mitraki A., Danner M., King J., Seckler R. Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro. J Biol Chem. 1993 Sep 25;268(27):20071–20075. [PubMed] [Google Scholar]
  27. Mitraki A., Fane B., Haase-Pettingell C., Sturtevant J., King J. Global suppression of protein folding defects and inclusion body formation. Science. 1991 Jul 5;253(5015):54–58. doi: 10.1126/science.1648264. [DOI] [PubMed] [Google Scholar]
  28. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  29. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robinson A. S., King J. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. Nat Struct Biol. 1997 Jun;4(6):450–455. doi: 10.1038/nsb0697-450. [DOI] [PubMed] [Google Scholar]
  31. Sather S. K., King J. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide. J Biol Chem. 1994 Oct 14;269(41):25268–25276. [PubMed] [Google Scholar]
  32. Sauer R. T., Krovatin W., Poteete A. R., Berget P. B. Phage P22 tail protein: gene and amino acid sequence. Biochemistry. 1982 Nov 9;21(23):5811–5815. doi: 10.1021/bi00266a014. [DOI] [PubMed] [Google Scholar]
  33. Seckler R., Fuchs A., King J., Jaenicke R. Reconstitution of the thermostable trimeric phage P22 tailspike protein from denatured chains in vitro. J Biol Chem. 1989 Jul 15;264(20):11750–11753. [PubMed] [Google Scholar]
  34. Skerra A., Pfitzinger I., Plückthun A. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Biotechnology (N Y) 1991 Mar;9(3):273–278. doi: 10.1038/nbt0391-273. [DOI] [PubMed] [Google Scholar]
  35. Steinbacher S., Baxa U., Miller S., Weintraub A., Seckler R., Huber R. Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10584–10588. doi: 10.1073/pnas.93.20.10584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Steinbacher S., Miller S., Baxa U., Budisa N., Weintraub A., Seckler R., Huber R. Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 A, fully refined structure of the endorhamnosidase at 1.56 A resolution, and the molecular basis of O-antigen recognition and cleavage. J Mol Biol. 1997 Apr 11;267(4):865–880. doi: 10.1006/jmbi.1997.0922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steinbacher S., Seckler R., Miller S., Steipe B., Huber R., Reinemer P. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science. 1994 Jul 15;265(5170):383–386. doi: 10.1126/science.8023158. [DOI] [PubMed] [Google Scholar]
  38. Sturtevant J. M., Yu M. H., Haase-Pettingell C., King J. Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein. J Biol Chem. 1989 Jun 25;264(18):10693–10698. [PubMed] [Google Scholar]
  39. Tobias J. W., Shrader T. E., Rocap G., Varshavsky A. The N-end rule in bacteria. Science. 1991 Nov 29;254(5036):1374–1377. doi: 10.1126/science.1962196. [DOI] [PubMed] [Google Scholar]
  40. Villafane R., King J. Nature and distribution of sites of temperature-sensitive folding mutations in the gene for the P22 tailspike polypeptide chain. J Mol Biol. 1988 Dec 5;204(3):607–619. doi: 10.1016/0022-2836(88)90359-2. [DOI] [PubMed] [Google Scholar]
  41. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  42. Yu M. H., King J. Single amino acid substitutions influencing the folding pathway of the phage P22 tail spike endorhamnosidase. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6584–6588. doi: 10.1073/pnas.81.21.6584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yu M. H., King J. Surface amino acids as sites of temperature-sensitive folding mutations in the P22 tailspike protein. J Biol Chem. 1988 Jan 25;263(3):1424–1431. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES