Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Oct;7(10):2184–2189. doi: 10.1002/pro.5560071016

Aggregation states of mitochondrial malate dehydrogenase.

S A Sánchez 1, T L Hazlett 1, J E Brunet 1, D M Jameson 1
PMCID: PMC2143840  PMID: 9792106

Abstract

The oligomeric state of fluorescein-labeled mitochondrial malate dehydrogenase (L-malate NAD+ oxidoreductase; mMDH; EC 1.1.1.37), as a function of protein concentration, has been examined using steady-state and dynamic polarization methodologies. A "global" rotational relaxation time of 103 +/- 7 ns was found for micromolar concentrations of mMDH-fluorescein, which is consistent with the reported size and shape of mMDH. Dilution of the mMDH-fluorescein conjugates, prepared using a phosphate buffer protocol, to nanomolar concentrations had no significant effect on the rotational relaxation time of the adduct, indicating that the dimer-monomer dissociation constant for mMDH is below 10(-9) M. In contrast to reports in the literature suggesting a pH-dependent dissociation of mMDH, the oligomeric state of this mMDH-fluorescein preparation remained unchanged between pH 5.0 and 8.0. Application of hydrostatic pressure up to 2.5 kilobars was ineffective in dissociating the mMDH dimer. However, the mMDH dimer was completely dissociated in 1.5 M guanidinium hydrochloride. Dilution of a mMDH-fluorescein conjugate, prepared using a Tris buffer protocol, did show dissociation, which can be attributed to aggregates present in these preparations. These results are considered in light of the disparities in the literature concerning the properties of the mMDH dimer-monomer equilibrium.

Full Text

The Full Text of this article is available as a PDF (564.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birktoft J. J., Fernley R. T., Bradshaw R. A., Banaszak L. J. Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6166–6170. doi: 10.1073/pnas.79.20.6166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bleile D. M., Schulz R. A., Harrison J. H., Gregory E. M. Investigation of the subunit interactions in malate dehydrogenase. J Biol Chem. 1977 Jan 25;252(2):755–758. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Brunet J. E., Vargas V., Gratton E., Jameson D. M. Hydrodynamics of horseradish peroxidase revealed by global analysis of multiple fluorescence probes. Biophys J. 1994 Feb;66(2 Pt 1):446–453. doi: 10.1016/s0006-3495(94)80796-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frieden C., Honegger J., Gilbert H. R. Malate dehydrogenases. The lack of evidence for dissociation of the dimeric enzyme in kinetic analyses. J Biol Chem. 1978 Feb 10;253(3):816–820. [PubMed] [Google Scholar]
  6. Gratton E., Jameson D. M., Hall R. D. Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng. 1984;13:105–124. doi: 10.1146/annurev.bb.13.060184.000541. [DOI] [PubMed] [Google Scholar]
  7. Hamman B. D., Oleinikov A. V., Jokhadze G. G., Traut R. R., Jameson D. M. Rotational and conformational dynamics of Escherichia coli ribosomal protein L7/L12. Biochemistry. 1996 Dec 24;35(51):16672–16679. doi: 10.1021/bi9615001. [DOI] [PubMed] [Google Scholar]
  8. Hodges C. T., Wiggins J. C., Harrison J. H. Investigation of the relation of the pH-dependent dissociation of malate dehydrogenase to modification of the enzyme by N-ethylmaleimide. J Biol Chem. 1977 Sep 10;252(17):6038–6041. [PubMed] [Google Scholar]
  9. Hönes G., Hönes J., Hauser M. Studies of enzyme-ligand complexes using dynamic fluorescence anisotropy. II. The coenzyme-binding site of malate dehydrogenase. Biol Chem Hoppe Seyler. 1986 Feb;367(2):103–108. doi: 10.1515/bchm3.1986.367.1.103. [DOI] [PubMed] [Google Scholar]
  10. Jablonski E. G., Brand L., Roseman S. Sugar transport by the bacterial phosphotransferase system. Preparation of a fluorescein derivative of the glucose-specific phosphocarrier protein IIIGlc and its binding to the phosphocarrier protein HPr. J Biol Chem. 1983 Aug 25;258(16):9690–9699. [PubMed] [Google Scholar]
  11. Jaenicke R., Rudolph R., Heider I. Quaternary structure, subunit activity, and in vitro association of porcine mitochondrial malic dehydrogenase. Biochemistry. 1979 Apr 3;18(7):1217–1223. doi: 10.1021/bi00574a016. [DOI] [PubMed] [Google Scholar]
  12. Jameson D. M., Sawyer W. H. Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol. 1995;246:283–300. doi: 10.1016/0076-6879(95)46014-4. [DOI] [PubMed] [Google Scholar]
  13. Jameson D. M., Thomas V., Zhou D. M. Time-resolved fluorescence studies on NADH bound to mitochondrial malate dehydrogenase. Biochim Biophys Acta. 1989 Feb 2;994(2):187–190. doi: 10.1016/0167-4838(89)90159-3. [DOI] [PubMed] [Google Scholar]
  14. Oi V. T., Vuong T. M., Hardy R., Reidler J., Dangle J., Herzenberg L. A., Stryer L. Correlation between segmental flexibility and effector function of antibodies. Nature. 1984 Jan 12;307(5947):136–140. doi: 10.1038/307136a0. [DOI] [PubMed] [Google Scholar]
  15. Place G. A., Beynon R. J. The effect of ionic environment on pig heart mitochondrial malate dehydrogenase. Int J Biochem. 1982;14(4):305–309. doi: 10.1016/0020-711x(82)90091-x. [DOI] [PubMed] [Google Scholar]
  16. Reidler J., Oi V. T., Carlsen W., Vuong T. M., Pecht I., Herzenberg L. A., Stryer L. Rotational dynamics of monoclonal anti-dansyl immunoglobulins. J Mol Biol. 1982 Jul 15;158(4):739–746. doi: 10.1016/0022-2836(82)90258-3. [DOI] [PubMed] [Google Scholar]
  17. Roderick S. L., Banaszak L. J. The three-dimensional structure of porcine heart mitochondrial malate dehydrogenase at 3.0-A resolution. J Biol Chem. 1986 Jul 15;261(20):9461–9464. [PubMed] [Google Scholar]
  18. Shore J. D., Chakrabarti S. K. Subunit dissociation of mitochondrial malate dehydrogenase. Biochemistry. 1976 Feb 24;15(4):875–879. doi: 10.1021/bi00649a023. [DOI] [PubMed] [Google Scholar]
  19. Silva J. L., Weber G. Pressure stability of proteins. Annu Rev Phys Chem. 1993;44:89–113. doi: 10.1146/annurev.pc.44.100193.000513. [DOI] [PubMed] [Google Scholar]
  20. Steffan J. S., McAlister-Henn L. Structural and functional effects of mutations altering the subunit interface of mitochondrial malate dehydrogenase. Arch Biochem Biophys. 1991 Jun;287(2):276–282. doi: 10.1016/0003-9861(91)90479-3. [DOI] [PubMed] [Google Scholar]
  21. WEBER G. Polarization of the fluorescence of macromolecules. II. Fluorescent conjugates of ovalbumin and bovine serum albumin. Biochem J. 1952 May;51(2):155–167. doi: 10.1042/bj0510155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wahl P., Weber G. Fluorescence depolarization of rabbit gamma globulin conjugates. J Mol Biol. 1967 Dec 14;30(2):371–382. doi: 10.1016/s0022-2836(67)80045-7. [DOI] [PubMed] [Google Scholar]
  23. Wood D. C., Hodges C. T., Harrison J. H. The relation of the pH and concentration-dependent dissociation of porcine heart mitochondrial malate dehydrogenase. Biochem Biophys Res Commun. 1978 Jun 14;82(3):943–950. doi: 10.1016/0006-291x(78)90874-4. [DOI] [PubMed] [Google Scholar]
  24. Wood D. C., Jurgensen S. R., Geesin J. C., Harrison J. H. Subunit interactions in mitochondrial malate dehydrogenase. Kinetics and mechanism of reassociation. J Biol Chem. 1981 Mar 10;256(5):2377–2382. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES