Abstract
The three-dimensional structure of betaine aldehyde dehydrogenase, the most abundant aldehyde dehydrogenase (ALDH) of cod liver, has been determined at 2.1 A resolution by the X-ray crystallographic method of molecular replacement. This enzyme represents a novel structure of the highly multiple ALDH, with at least 12 distinct classes in humans. This betaine ALDH of class 9 is different from the two recently determined ALDH structures (classes 2 and 3). Like these, the betaine ALDH structure has three domains, one coenzyme binding domain, one catalytic domain, and one oligomerization domain. Crystals grown in the presence or absence of NAD+ have very similar structures and no significant conformational change occurs upon coenzyme binding. This is probably due to the tight interactions between domains within the subunit and between subunits in the tetramer. The oligomerization domains link the catalytic domains together into two 20-stranded pleated sheet structures. The overall structure is similar to that of the tetrameric bovine class 2 and dimeric rat class 3 ALDH, but the coenzyme binding with the nicotinamide in anti conformation, resembles that of class 2 rather than of class 3.
Full Text
The Full Text of this article is available as a PDF (9.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chern M. K., Pietruszko R. Human aldehyde dehydrogenase E3 isozyme is a betaine aldehyde dehydrogenase. Biochem Biophys Res Commun. 1995 Aug 15;213(2):561–568. doi: 10.1006/bbrc.1995.2168. [DOI] [PubMed] [Google Scholar]
- Eklund H., Samama J. P., Jones T. A. Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase. Biochemistry. 1984 Dec 4;23(25):5982–5996. doi: 10.1021/bi00320a014. [DOI] [PubMed] [Google Scholar]
- Farrés J., Wang X., Takahashi K., Cunningham S. J., Wang T. T., Weiner H. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J Biol Chem. 1994 May 13;269(19):13854–13860. [PubMed] [Google Scholar]
- Gilson M. K., Straatsma T. P., McCammon J. A., Ripoll D. R., Faerman C. H., Axelsen P. H., Silman I., Sussman J. L. Open "back door" in a molecular dynamics simulation of acetylcholinesterase. Science. 1994 Mar 4;263(5151):1276–1278. doi: 10.1126/science.8122110. [DOI] [PubMed] [Google Scholar]
- Hempel J., von Bahr-Lindström H., Jörnvall H. Aldehyde dehydrogenase from human liver. Primary structure of the cytoplasmic isoenzyme. Eur J Biochem. 1984 May 15;141(1):21–35. doi: 10.1111/j.1432-1033.1984.tb08150.x. [DOI] [PubMed] [Google Scholar]
- Ingelman M., Bianchi V., Eklund H. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. J Mol Biol. 1997 Apr 25;268(1):147–157. doi: 10.1006/jmbi.1997.0957. [DOI] [PubMed] [Google Scholar]
- Jones K. H., Lindahl R., Baker D. C., Timkovich R. Hydride transfer stereospecificity of rat liver aldehyde dehydrogenases. J Biol Chem. 1987 Aug 15;262(23):10911–10913. [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Jörnvall H., Hög J. O. Nomenclature of alcohol dehydrogenases. Alcohol Alcohol. 1995 Mar;30(2):153–161. [PubMed] [Google Scholar]
- Kedishvili N. Y., Gough W. H., Chernoff E. A., Hurley T. D., Stone C. L., Bowman K. D., Popov K. M., Bosron W. F., Li T. K. cDNA sequence and catalytic properties of a chick embryo alcohol dehydrogenase that oxidizes retinol and 3beta,5alpha-hydroxysteroids. J Biol Chem. 1997 Mar 14;272(11):7494–7500. doi: 10.1074/jbc.272.11.7494. [DOI] [PubMed] [Google Scholar]
- Kurys G., Ambroziak W., Pietruszko R. Human aldehyde dehydrogenase. Purification and characterization of a third isozyme with low Km for gamma-aminobutyraldehyde. J Biol Chem. 1989 Mar 15;264(8):4715–4721. [PubMed] [Google Scholar]
- Kutzenko A. S., Lamzin V. S., Popov V. O. Conserved supersecondary structural motif in NAD-dependent dehydrogenases. FEBS Lett. 1998 Feb 13;423(1):105–109. doi: 10.1016/s0014-5793(98)00074-x. [DOI] [PubMed] [Google Scholar]
- Liu Z. J., Sun Y. J., Rose J., Chung Y. J., Hsiao C. D., Chang W. R., Kuo I., Perozich J., Lindahl R., Hempel J. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol. 1997 Apr;4(4):317–326. doi: 10.1038/nsb0497-317. [DOI] [PubMed] [Google Scholar]
- Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
- Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
- Persson B., Zigler J. S., Jr, Jörnvall H. A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins. Eur J Biochem. 1994 Nov 15;226(1):15–22. doi: 10.1111/j.1432-1033.1994.tb20021.x. [DOI] [PubMed] [Google Scholar]
- Pietruszko R., Kikonyogo A., Chern M. K., Izaguirre G. Human aldehyde dehydrogenase E3. Further characterization. Adv Exp Med Biol. 1997;414:243–252. doi: 10.1007/978-1-4615-5871-2_28. [DOI] [PubMed] [Google Scholar]
- Rice L. M., Brünger A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins. 1994 Aug;19(4):277–290. doi: 10.1002/prot.340190403. [DOI] [PubMed] [Google Scholar]
- Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
- Silman I., Harel M., Axelsen P., Raves M., Sussman J. L. Three-dimensional structures of acetylcholinesterase and of its complexes with anticholinesterase agents. Biochem Soc Trans. 1994 Aug;22(3):745–749. doi: 10.1042/bst0220745. [DOI] [PubMed] [Google Scholar]
- Steinmetz C. G., Xie P., Weiner H., Hurley T. D. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure. 1997 May 15;5(5):701–711. doi: 10.1016/s0969-2126(97)00224-4. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Silman I. Three-dimensional structure of acetylcholinesterase and of its complexes with anticholinesterase drugs. Chem Biol Interact. 1993 Jun;87(1-3):187–197. doi: 10.1016/0009-2797(93)90042-w. [DOI] [PubMed] [Google Scholar]
- Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
- Yin S. J., Vagelopoulos N., Wang S. L., Jörnvall H. Structural features of stomach aldehyde dehydrogenase distinguish dimeric aldehyde dehydrogenase as a 'variable' enzyme. 'Variable' and 'constant' enzymes within the alcohol and aldehyde dehydrogenase families. FEBS Lett. 1991 May 20;283(1):85–88. doi: 10.1016/0014-5793(91)80559-l. [DOI] [PubMed] [Google Scholar]
- Yoshida A., Rzhetsky A., Hsu L. C., Chang C. Human aldehyde dehydrogenase gene family. Eur J Biochem. 1998 Feb 1;251(3):549–557. doi: 10.1046/j.1432-1327.1998.2510549.x. [DOI] [PubMed] [Google Scholar]
