Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Oct;7(10):2099–2105. doi: 10.1002/pro.5560071006

Crystal structure of spinach plastocyanin at 1.7 A resolution.

Y Xue 1, M Okvist 1, O Hansson 1, S Young 1
PMCID: PMC2143848  PMID: 9792096

Abstract

The crystal structure of plastocyanin from spinach has been determined using molecular replacement, with the structure of plastocyanin from poplar as a search model. Successful crystallization was facilitated by site-directed mutagenesis in which residue Gly8 was substituted with Asp. The region around residue 8 was believed to be too mobile for the wild-type protein to form crystals despite extensive screening. The current structure represents the oxidized plastocyanin, copper (II), at low pH (approximately 4.4). In contrast to the similarity in the core region as compared to its poplar counterpart, the structure shows some significant differences in loop regions. The most notable is the large shift of the 59-61 loop where the largest shift is 3.0 A for the C(alpha) atom of Glu59. This results in different patterns of electrostatic potential around the acidic patches for the two proteins.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badsberg U., Jørgensen A. M., Gesmar H., Led J. J., Hammerstad J. M., Jespersen L. L., Ulstrup J. Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis. Biochemistry. 1996 Jun 4;35(22):7021–7031. doi: 10.1021/bi960621y. [DOI] [PubMed] [Google Scholar]
  2. Bagby S., Driscoll P. C., Harvey T. S., Hill H. A. High-resolution solution structure of reduced parsley plastocyanin. Biochemistry. 1994 May 31;33(21):6611–6622. doi: 10.1021/bi00187a031. [DOI] [PubMed] [Google Scholar]
  3. Chapman G. V., Colman P. M., Freeman H. C., Guss J. M., Murata M., Norris V. A., Ramshaw J. A., Venkatappa M. P. Preliminary crystallographic data for a copper-containing protein, plastocyanin. J Mol Biol. 1977 Feb 15;110(1):187–189. doi: 10.1016/s0022-2836(77)80106-x. [DOI] [PubMed] [Google Scholar]
  4. Durell S. R., Labanowski J. K., Gross E. L. Modeling of the electrostatic potential field of plastocyanin. Arch Biochem Biophys. 1990 Mar;277(2):241–254. doi: 10.1016/0003-9861(90)90575-j. [DOI] [PubMed] [Google Scholar]
  5. Ejdebäck M., Young S., Samuelsson A., Karlsson B. G. Effects of codon usage and vector-host combinations on the expression of spinach plastocyanin in Escherichia coli. Protein Expr Purif. 1997 Oct;11(1):17–25. doi: 10.1006/prep.1997.0743. [DOI] [PubMed] [Google Scholar]
  6. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  7. Guss J. M., Bartunik H. D., Freeman H. C. Accuracy and precision in protein structure analysis: restrained least-squares refinement of the structure of poplar plastocyanin at 1.33 A resolution. Acta Crystallogr B. 1992 Dec 1;48(Pt 6):790–811. doi: 10.1107/s0108768192004270. [DOI] [PubMed] [Google Scholar]
  8. Haehnel W., Jansen T., Gause K., Klösgen R. B., Stahl B., Michl D., Huvermann B., Karas M., Herrmann R. G. Electron transfer from plastocyanin to photosystem I. EMBO J. 1994 Mar 1;13(5):1028–1038. doi: 10.1002/j.1460-2075.1994.tb06351.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hibino T., Lee B. H., Yajima T., Odani A., Yamauchi O., Takabe T. Kinetic and cross-linking studies on the interactions of negative patch mutant plastocyanin from Silene pratensis with photosystem I complexes from cyanobacteria, green algae, and plants. J Biochem. 1996 Sep;120(3):556–563. doi: 10.1093/oxfordjournals.jbchem.a021450. [DOI] [PubMed] [Google Scholar]
  10. Hippler M., Reichert J., Sutter M., Zak E., Altschmied L., Schröer U., Herrmann R. G., Haehnel W. The plastocyanin binding domain of photosystem I. EMBO J. 1996 Dec 2;15(23):6374–6384. [PMC free article] [PubMed] [Google Scholar]
  11. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  12. Kleywegt G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):842–857. doi: 10.1107/S0907444995016477. [DOI] [PubMed] [Google Scholar]
  13. Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
  14. Lee B. H., Hibino T., Takabe T., Weisbeek P. J., Takabe T. Site-directed mutagenetic study on the role of negative patches on silene plastocyanin in the interactions with cytochrome f and photosystem I. J Biochem. 1995 Jun;117(6):1209–1217. doi: 10.1093/oxfordjournals.jbchem.a124846. [DOI] [PubMed] [Google Scholar]
  15. Murshudov G. N., Vagin A. A., Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240–255. doi: 10.1107/S0907444996012255. [DOI] [PubMed] [Google Scholar]
  16. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  17. Nordling M., Sigfridsson K., Young S., Lundberg L. G., Hansson O. Flash-photolysis studies of the electron transfer from genetically modified spinach plastocyanin to photosystem I. FEBS Lett. 1991 Oct 21;291(2):327–330. doi: 10.1016/0014-5793(91)81313-w. [DOI] [PubMed] [Google Scholar]
  18. Pearson D. C., Jr, Gross E. L., David E. S. Electrostatic properties of cytochrome f: implications for docking with plastocyanin. Biophys J. 1996 Jul;71(1):64–76. doi: 10.1016/S0006-3495(96)79236-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Redinbo M. R., Cascio D., Choukair M. K., Rice D., Merchant S., Yeates T. O. The 1.5-A crystal structure of plastocyanin from the green alga Chlamydomonas reinhardtii. Biochemistry. 1993 Oct 12;32(40):10560–10567. doi: 10.1021/bi00091a005. [DOI] [PubMed] [Google Scholar]
  20. Redinbo M. R., Yeates T. O., Merchant S. Plastocyanin: structural and functional analysis. J Bioenerg Biomembr. 1994 Feb;26(1):49–66. doi: 10.1007/BF00763219. [DOI] [PubMed] [Google Scholar]
  21. Sigfridsson K., Young S., Hansson O. Electron transfer between spinach plastocyanin mutants and photosystem 1. Eur J Biochem. 1997 May 1;245(3):805–812. doi: 10.1111/j.1432-1033.1997.00805.x. [DOI] [PubMed] [Google Scholar]
  22. Sigfridsson K., Young S., Hansson O. Structural dynamics in the plastocyanin-photosystem 1 electron-transfer complex as revealed by mutant studies. Biochemistry. 1996 Jan 30;35(4):1249–1257. doi: 10.1021/bi9520141. [DOI] [PubMed] [Google Scholar]
  23. Ubbink M., Ejdebäck M., Karlsson B. G., Bendall D. S. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure. 1998 Mar 15;6(3):323–335. doi: 10.1016/s0969-2126(98)00035-5. [DOI] [PubMed] [Google Scholar]
  24. Young S., Sigfridsson K., Olesen K., Hansson O. The involvement of the two acidic patches of spinach plastocyanin in the reaction with photosystem I. Biochim Biophys Acta. 1997 Dec 15;1322(2-3):106–114. doi: 10.1016/s0005-2728(97)00064-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES