Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2460–2464. doi: 10.1002/pro.5560071124

Proteolysis as a measure of the free energy difference between cytochrome c and its derivatives.

L Wang 1, N R Kallenbach 1
PMCID: PMC2143853  PMID: 9828013

Abstract

Limited cleavage of oxidized and reduced horse heart cytochrome c (Cyt c) and the azide complex of Cyt c by proteinase K at room temperature yields a single cut within the central loop (36-60 in the sequence). Using an assay that allows spectroscopic evaluation of the fraction of intact protein as a function of time, together with a simple kinetic model for proteolysis, fluctuation opening of the loop can be related to the free energy of the corresponding protein. This allows us to estimate quantitatively the free energy difference between the oxidized form of Cyt c and other states using proteolysis as a probe. The results we obtain indicate that oxidized Cyt c is 2.0 kcal mol(-1) less stable than the reduced form, and 0.07 kcal mol(-1) is more stable than the Cyt c: azide complex at 25 degrees C. These values agree in magnitude with results from hydrogen exchange and unfolding studies, suggesting that the stability of a protein can be directly related to its structural dynamics.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai Y., Sosnick T. R., Mayne L., Englander S. W. Protein folding intermediates: native-state hydrogen exchange. Science. 1995 Jul 14;269(5221):192–197. doi: 10.1126/science.7618079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bajorath J., Saenger W., Pal G. P. Autolysis and inhibition of proteinase K, a subtilisin-related serine proteinase isolated from the fungus Tritirachium album Limber. Biochim Biophys Acta. 1988 May 18;954(2):176–182. doi: 10.1016/0167-4838(88)90069-6. [DOI] [PubMed] [Google Scholar]
  3. Cohen S. L., Ferré-D'Amaré A. R., Burley S. K., Chait B. T. Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry. Protein Sci. 1995 Jun;4(6):1088–1099. doi: 10.1002/pro.5560040607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ellison D., Hinton J., Hubbard S. J., Beynon R. J. Limited proteolysis of native proteins: the interaction between avidin and proteinase K. Protein Sci. 1995 Jul;4(7):1337–1345. doi: 10.1002/pro.5560040709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fisher W. R., Taniuchi H., Anfinsen C. B. On the role of heme in the formation of the structure of cytochrome c. J Biol Chem. 1973 May 10;248(9):3188–3195. [PubMed] [Google Scholar]
  6. Fontana A., Fassina G., Vita C., Dalzoppo D., Zamai M., Zambonin M. Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry. 1986 Apr 22;25(8):1847–1851. doi: 10.1021/bi00356a001. [DOI] [PubMed] [Google Scholar]
  7. Fontana A., Polverino de Laureto P., De Filippis V., Scaramella E., Zambonin M. Probing the partly folded states of proteins by limited proteolysis. Fold Des. 1997;2(2):R17–R26. doi: 10.1016/S1359-0278(97)00010-2. [DOI] [PubMed] [Google Scholar]
  8. Greenfield N., Davidson B., Fasman G. D. The use of computed optical rotatory dispersion curves for the evaluation of protein conformation. Biochemistry. 1967 Jun;6(6):1630–1637. doi: 10.1021/bi00858a009. [DOI] [PubMed] [Google Scholar]
  9. Hantgan R. R., Taniuchi H. Conformational dynamics in cytochrome c. A fragment exchange study. J Biol Chem. 1978 Aug 10;253(15):5373–5380. [PubMed] [Google Scholar]
  10. Ikai A., Fish W. W., Tanford C. Kinetics of unfolding and refolding of proteins. II. Results for cytochrome c. J Mol Biol. 1973 Jan 10;73(2):165–184. doi: 10.1016/0022-2836(73)90321-5. [DOI] [PubMed] [Google Scholar]
  11. Johnson C. M., Price N. C. The susceptibility towards proteolysis of intermediates during the renaturation of yeast phosphoglycerate mutase. Biochem J. 1986 Jun 1;236(2):617–620. doi: 10.1042/bj2360617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nabedryk-Viala E., Thiéry C., Calvet P., Thiéry J. M. Hydrogen-isotope exchange of oxidized and reduced cytochrome c. A comparison of mass spectrometry and infrared methods. Eur J Biochem. 1976 Jan 2;61(1):253–258. doi: 10.1111/j.1432-1033.1976.tb10018.x. [DOI] [PubMed] [Google Scholar]
  13. Novotný J., Bruccoleri R. E. Correlation among sites of limited proteolysis, enzyme accessibility and segmental mobility. FEBS Lett. 1987 Jan 26;211(2):185–189. doi: 10.1016/0014-5793(87)81433-3. [DOI] [PubMed] [Google Scholar]
  14. Pace C. N. The stability of globular proteins. CRC Crit Rev Biochem. 1975 May;3(1):1–43. doi: 10.3109/10409237509102551. [DOI] [PubMed] [Google Scholar]
  15. Pfeil W. The problem of the stability globular proteins. Mol Cell Biochem. 1981 Oct 9;40(1):3–28. doi: 10.1007/BF00230185. [DOI] [PubMed] [Google Scholar]
  16. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  17. Sosnick T. R., Shtilerman M. D., Mayne L., Englander S. W. Ultrafast signals in protein folding and the polypeptide contracted state. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8545–8550. doi: 10.1073/pnas.94.16.8545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stellwagen E., Rysavy R., Babul G. The conformation of horse heart apocytochrome c. J Biol Chem. 1972 Dec 25;247(24):8074–8077. [PubMed] [Google Scholar]
  19. Tsong T. Y. Detection of three kinetic phases in the thermal unfolding of ferricytochrome c. Biochemistry. 1973 Jun 5;12(12):2209–2214. doi: 10.1021/bi00736a005. [DOI] [PubMed] [Google Scholar]
  20. Viola F., Aime S., Coletta M., Desideri A., Fasano M., Paoletti S., Tarricone C., Ascenzi P. Azide, cyanide, fluoride, imidazole and pyridine binding to ferric and ferrous native horse heart cytochrome c and to its carboxymethylated derivative: a comparative study. J Inorg Biochem. 1996 May 15;62(3):213–222. doi: 10.1016/0162-0134(95)00155-7. [DOI] [PubMed] [Google Scholar]
  21. Wang L., Chen R. X., Kallenbach N. R. Proteolysis as a probe of thermal unfolding of cytochrome c. Proteins. 1998 Mar 1;30(4):435–441. [PubMed] [Google Scholar]
  22. Wu L. C., Laub P. B., Elöve G. A., Carey J., Roder H. A noncovalent peptide complex as a model for an early folding intermediate of cytochrome c. Biochemistry. 1993 Sep 28;32(38):10271–10276. doi: 10.1021/bi00089a050. [DOI] [PubMed] [Google Scholar]
  23. Yu Y., Makhatadze G. I., Pace C. N., Privalov P. L. Energetics of ribonuclease T1 structure. Biochemistry. 1994 Mar 22;33(11):3312–3319. doi: 10.1021/bi00177a023. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES