Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2287–2300. doi: 10.1002/pro.5560071106

Determinants of strand register in antiparallel beta-sheets of proteins.

E G Hutchinson 1, R B Sessions 1, J M Thornton 1, D N Woolfson 1
PMCID: PMC2143855  PMID: 9827995

Abstract

Antiparallel beta-sheets present two distinct environments to inter-strand residue pairs: beta(A,HB) sites have two backbone hydrogen bonds; whereas at beta(A,NHB) positions backbone hydrogen bonding is precluded. We used statistical methods to compare the frequencies of amino acid pairs at each site. Only approximately 10% of the 210 possible pairs showed occupancies that differed significantly between the two sites. Trends were clear in the preferred pairs, and these could be explained using stereochemical arguments. Cys-Cys, Aromatic-Pro, Thr-Thr, and Val-Val pairs all preferred the beta(A,NHB) site. In each case, the residues usually adopted sterically favored chi1 conformations, which facilitated intra-pair interactions: Cys-Cys pairs formed disulfide bonds; Thr-Thr pairs made hydrogen bonds; Aromatic-Pro and Val-Val pairs formed close van der Waals contacts. In contrast, to make intimate interactions at a beta(A,HB) site, one or both residues had to adopt less favored chi1 geometries. Nonetheless, pairs containing glycine and/or aromatic residues were favored at this site. Where glycine and aromatic side chains combined, the aromatic residue usually adopted the gauche conformation, which promoted novel aromatic ring-peptide interactions. This work provides rules that link protein sequence and tertiary structure, which will be useful in protein modeling, redesign, and de novo design. Our findings are discussed in light of previous analyses and experimental studies.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Betz S. F., Bryson J. W., DeGrado W. F. Native-like and structurally characterized designed alpha-helical bundles. Curr Opin Struct Biol. 1995 Aug;5(4):457–463. doi: 10.1016/0959-440x(95)80029-8. [DOI] [PubMed] [Google Scholar]
  4. Betz S. F., Raleigh D. P., DeGrado W. F., Lovejoy B., Anderson D., Ogihara N., Eisenberg D. Crystallization of a designed peptide from a molten globule ensemble. Fold Des. 1996;1(1):57–64. doi: 10.1016/S1359-0278(96)00012-0. [DOI] [PubMed] [Google Scholar]
  5. Burley S. K., Petsko G. A. Weakly polar interactions in proteins. Adv Protein Chem. 1988;39:125–189. doi: 10.1016/s0065-3233(08)60376-9. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  7. Dahiyat B. I., Mayo S. L. De novo protein design: fully automated sequence selection. Science. 1997 Oct 3;278(5335):82–87. doi: 10.1126/science.278.5335.82. [DOI] [PubMed] [Google Scholar]
  8. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein A. V. Predicted beta-structure stability parameters under experimental test. Protein Eng. 1995 Feb;8(2):207–209. doi: 10.1093/protein/8.2.207. [DOI] [PubMed] [Google Scholar]
  10. Frishman D., Argos P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng. 1996 Feb;9(2):133–142. doi: 10.1093/protein/9.2.133. [DOI] [PubMed] [Google Scholar]
  11. Gonzalez L., Jr, Woolfson D. N., Alber T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Biol. 1996 Dec;3(12):1011–1018. doi: 10.1038/nsb1296-1011. [DOI] [PubMed] [Google Scholar]
  12. Gunasekaran K., Ramakrishnan C., Balaram P. Beta-hairpins in proteins revisited: lessons for de novo design. Protein Eng. 1997 Oct;10(10):1131–1141. doi: 10.1093/protein/10.10.1131. [DOI] [PubMed] [Google Scholar]
  13. Harbury P. B., Zhang T., Kim P. S., Alber T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science. 1993 Nov 26;262(5138):1401–1407. doi: 10.1126/science.8248779. [DOI] [PubMed] [Google Scholar]
  14. Hubbard T. J., Park J. Fold recognition and ab initio structure predictions using hidden Markov models and beta-strand pair potentials. Proteins. 1995 Nov;23(3):398–402. doi: 10.1002/prot.340230313. [DOI] [PubMed] [Google Scholar]
  15. Hunter C. A., Singh J., Thornton J. M. Pi-pi interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. J Mol Biol. 1991 Apr 20;218(4):837–846. doi: 10.1016/0022-2836(91)90271-7. [DOI] [PubMed] [Google Scholar]
  16. Huyghues-Despointes B. M., Klingler T. M., Baldwin R. L. Measuring the strength of side-chain hydrogen bonds in peptide helices: the Gln.Asp (i, i + 4) interaction. Biochemistry. 1995 Oct 17;34(41):13267–13271. doi: 10.1021/bi00041a001. [DOI] [PubMed] [Google Scholar]
  17. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  18. Kemmink J., Creighton T. E. The physical properties of local interactions of tyrosine residues in peptides and unfolded proteins. J Mol Biol. 1995 Jan 20;245(3):251–260. doi: 10.1006/jmbi.1994.0021. [DOI] [PubMed] [Google Scholar]
  19. Kemmink J., van Mierlo C. P., Scheek R. M., Creighton T. E. Local structure due to an aromatic-amide interaction observed by 1H-nuclear magnetic resonance spectroscopy in peptides related to the N terminus of bovine pancreatic trypsin inhibitor. J Mol Biol. 1993 Mar 5;230(1):312–322. doi: 10.1006/jmbi.1993.1144. [DOI] [PubMed] [Google Scholar]
  20. Kemp D. S. Peptidomimetics and the template approach to nucleation of beta-sheets and alpha-helices in peptides. Trends Biotechnol. 1990 Sep;8(9):249–255. doi: 10.1016/0167-7799(90)90187-3. [DOI] [PubMed] [Google Scholar]
  21. Kim C. A., Berg J. M. Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature. 1993 Mar 18;362(6417):267–270. doi: 10.1038/362267a0. [DOI] [PubMed] [Google Scholar]
  22. Lazar G. A., Desjarlais J. R., Handel T. M. De novo design of the hydrophobic core of ubiquitin. Protein Sci. 1997 Jun;6(6):1167–1178. doi: 10.1002/pro.5560060605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levitt M. Conformational preferences of amino acids in globular proteins. Biochemistry. 1978 Oct 3;17(20):4277–4285. doi: 10.1021/bi00613a026. [DOI] [PubMed] [Google Scholar]
  24. Lifson S., Sander C. Specific recognition in the tertiary structure of beta-sheets of proteins. J Mol Biol. 1980 Jun 5;139(4):627–639. doi: 10.1016/0022-2836(80)90052-2. [DOI] [PubMed] [Google Scholar]
  25. Lim V. I. Algorithms for prediction of alpha-helical and beta-structural regions in globular proteins. J Mol Biol. 1974 Oct 5;88(4):873–894. doi: 10.1016/0022-2836(74)90405-7. [DOI] [PubMed] [Google Scholar]
  26. Lim V. I. Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. J Mol Biol. 1974 Oct 5;88(4):857–872. doi: 10.1016/0022-2836(74)90404-5. [DOI] [PubMed] [Google Scholar]
  27. McGregor M. J., Islam S. A., Sternberg M. J. Analysis of the relationship between side-chain conformation and secondary structure in globular proteins. J Mol Biol. 1987 Nov 20;198(2):295–310. doi: 10.1016/0022-2836(87)90314-7. [DOI] [PubMed] [Google Scholar]
  28. Minor D. L., Jr, Kim P. S. Context is a major determinant of beta-sheet propensity. Nature. 1994 Sep 15;371(6494):264–267. doi: 10.1038/371264a0. [DOI] [PubMed] [Google Scholar]
  29. Minor D. L., Jr, Kim P. S. Measurement of the beta-sheet-forming propensities of amino acids. Nature. 1994 Feb 17;367(6464):660–663. doi: 10.1038/367660a0. [DOI] [PubMed] [Google Scholar]
  30. Mitchell J. B., Nandi C. L., McDonald I. K., Thornton J. M., Price S. L. Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J Mol Biol. 1994 Jun 3;239(2):315–331. doi: 10.1006/jmbi.1994.1370. [DOI] [PubMed] [Google Scholar]
  31. Munson M., Balasubramanian S., Fleming K. G., Nagi A. D., O'Brien R., Sturtevant J. M., Regan L. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Protein Sci. 1996 Aug;5(8):1584–1593. doi: 10.1002/pro.5560050813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Muñoz V., Serrano L. Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: comparison with experimental scales. Proteins. 1994 Dec;20(4):301–311. doi: 10.1002/prot.340200403. [DOI] [PubMed] [Google Scholar]
  33. Nardi F., Worth G. A., Wade R. C. Local interactions of aromatic residues in short peptides in aqueous solution: a combined database and energetic analysis. Fold Des. 1997;2(4):S62–S68. doi: 10.1016/s1359-0278(97)00066-7. [DOI] [PubMed] [Google Scholar]
  34. Orengo C. A., Brown N. P., Taylor W. R. Fast structure alignment for protein databank searching. Proteins. 1992 Oct;14(2):139–167. doi: 10.1002/prot.340140203. [DOI] [PubMed] [Google Scholar]
  35. Otzen D. E., Fersht A. R. Side-chain determinants of beta-sheet stability. Biochemistry. 1995 May 2;34(17):5718–5724. doi: 10.1021/bi00017a003. [DOI] [PubMed] [Google Scholar]
  36. Padmanabhan S., Baldwin R. L. Tests for helix-stabilizing interactions between various nonpolar side chains in alanine-based peptides. Protein Sci. 1994 Nov;3(11):1992–1997. doi: 10.1002/pro.5560031111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  38. Ramírez-Alvarado M., Blanco F. J., Niemann H., Serrano L. Role of beta-turn residues in beta-hairpin formation and stability in designed peptides. J Mol Biol. 1997 Nov 7;273(4):898–912. doi: 10.1006/jmbi.1997.1347. [DOI] [PubMed] [Google Scholar]
  39. Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
  40. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  41. Searle M. S., Williams D. H., Packman L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995 Nov;2(11):999–1006. doi: 10.1038/nsb1195-999. [DOI] [PubMed] [Google Scholar]
  42. Sessions R. B., Dauber-Osguthorpe P., Osguthorpe D. J. Filtering molecular dynamics trajectories to reveal low-frequency collective motions: phospholipase A2. J Mol Biol. 1989 Dec 5;210(3):617–633. doi: 10.1016/0022-2836(89)90136-8. [DOI] [PubMed] [Google Scholar]
  43. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  44. Smith C. K., Withka J. M., Regan L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry. 1994 May 10;33(18):5510–5517. doi: 10.1021/bi00184a020. [DOI] [PubMed] [Google Scholar]
  45. Stapley B. J., Doig A. J. Hydrogen bonding interactions between glutamine and asparagine in alpha-helical peptides. J Mol Biol. 1997 Sep 26;272(3):465–473. doi: 10.1006/jmbi.1997.1262. [DOI] [PubMed] [Google Scholar]
  46. Sun S., Thomas P. D., Dill K. A. A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Eng. 1995 Aug;8(8):769–778. doi: 10.1093/protein/8.8.769. [DOI] [PubMed] [Google Scholar]
  47. Swindells M. B., MacArthur M. W., Thornton J. M. Intrinsic phi, psi propensities of amino acids, derived from the coil regions of known structures. Nat Struct Biol. 1995 Jul;2(7):596–603. doi: 10.1038/nsb0795-596. [DOI] [PubMed] [Google Scholar]
  48. Tisi L. C., Evans P. A. Conserved structural features on protein surfaces: small exterior hydrophobic clusters. J Mol Biol. 1995 Jun 2;249(2):251–258. doi: 10.1006/jmbi.1995.0294. [DOI] [PubMed] [Google Scholar]
  49. Valencia A., Hubbard T. J., Muga A., Bañuelos S., Llorca O., Carrascosa J. L., Valpuesta J. M. Prediction of the structure of GroES and its interaction with GroEL. Proteins. 1995 Jul;22(3):199–209. doi: 10.1002/prot.340220302. [DOI] [PubMed] [Google Scholar]
  50. West M. W., Hecht M. H. Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins. Protein Sci. 1995 Oct;4(10):2032–2039. doi: 10.1002/pro.5560041008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Woolfson D. N., Alber T. Predicting oligomerization states of coiled coils. Protein Sci. 1995 Aug;4(8):1596–1607. doi: 10.1002/pro.5560040818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wouters M. A., Curmi P. M. An analysis of side chain interactions and pair correlations within antiparallel beta-sheets: the differences between backbone hydrogen-bonded and non-hydrogen-bonded residue pairs. Proteins. 1995 Jun;22(2):119–131. doi: 10.1002/prot.340220205. [DOI] [PubMed] [Google Scholar]
  53. de Alba E., Jiménez M. A., Rico M., Nieto J. L. Conformational investigation of designed short linear peptides able to fold into beta-hairpin structures in aqueous solution. Fold Des. 1996;1(2):133–144. doi: 10.1016/s1359-0278(96)00022-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES