Abstract
We investigated the pathway for pressure unfolding of metmyoglobin using molecular dynamics (MD) for a range of pressures (0.1 MPa to 1.2 GPa) and a temperature of 300 K. We find that the unfolding of metmyoglobin proceeds via a two-step mechanism native --> molten globule intermediate --> unfolded, where the molten globule forms at 700 MPa. The simulation describes qualitatively the experimental behavior of metmyoglobin under pressure. We find that unfolding of the alpha-helices follows the sequence of migrating hydrogen bonds (i,i + 4) --> (i,i + 2).
Full Text
The Full Text of this article is available as a PDF (6.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldwin R. L. Experimental studies of pathways of protein folding. Ciba Found Symp. 1991;161:190–205. [PubMed] [Google Scholar]
- Bashford D., Chothia C., Lesk A. M. Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol. 1987 Jul 5;196(1):199–216. doi: 10.1016/0022-2836(87)90521-3. [DOI] [PubMed] [Google Scholar]
- Bismuto E., Irace G., Sirangelo I., Gratton E. Pressure-induced perturbation of ANS-apomyoglobin complex: frequency domain fluorescence studies on native and acidic compact states. Protein Sci. 1996 Jan;5(1):121–126. doi: 10.1002/pro.5560050115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chryssomallis G. S., Torgerson P. M., Drickamer H. G., Weber G. Effect of hydrostatic pressure on lysozyme and chymotrypsinogen detected by fluorescence polarization. Biochemistry. 1981 Jul 7;20(14):3955–3959. doi: 10.1021/bi00517a002. [DOI] [PubMed] [Google Scholar]
- Dufour E., Hoa G. H., Haertlé T. High-pressure effects on beta-lactoglobulin interactions with ligands studied by fluorescence. Biochim Biophys Acta. 1994 Jun 12;1206(2):166–172. doi: 10.1016/0167-4838(94)90204-6. [DOI] [PubMed] [Google Scholar]
- Eliezer D., Wright P. E. Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol. 1996 Nov 8;263(4):531–538. doi: 10.1006/jmbi.1996.0596. [DOI] [PubMed] [Google Scholar]
- Griko Y. V., Privalov P. L. Thermodynamic puzzle of apomyoglobin unfolding. J Mol Biol. 1994 Jan 28;235(4):1318–1325. doi: 10.1006/jmbi.1994.1085. [DOI] [PubMed] [Google Scholar]
- Gross M., Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem. 1994 Apr 15;221(2):617–630. doi: 10.1111/j.1432-1033.1994.tb18774.x. [DOI] [PubMed] [Google Scholar]
- Hummer G., Garde S., García A. E., Paulaitis M. E., Pratt L. R. The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1552–1555. doi: 10.1073/pnas.95.4.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hünenberger P. H., Mark A. E., van Gunsteren W. F. Computational approaches to study protein unfolding: hen egg white lysozyme as a case study. Proteins. 1995 Mar;21(3):196–213. doi: 10.1002/prot.340210303. [DOI] [PubMed] [Google Scholar]
- Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991 Dec 18;202(3):715–728. doi: 10.1111/j.1432-1033.1991.tb16426.x. [DOI] [PubMed] [Google Scholar]
- Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
- Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
- Kitchen D. B., Reed L. H., Levy R. M. Molecular dynamics simulation of solvated protein at high pressure. Biochemistry. 1992 Oct 20;31(41):10083–10093. doi: 10.1021/bi00156a031. [DOI] [PubMed] [Google Scholar]
- Li T. M., Hook J. W., 3rd, Drickamer H. G., Weber G. Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme. Biochemistry. 1976 Dec 14;15(25):5571–5580. doi: 10.1021/bi00670a023. [DOI] [PubMed] [Google Scholar]
- Peng X., Jonas J., Silva J. L. High-pressure NMR study of the dissociation of Arc repressor. Biochemistry. 1994 Jul 12;33(27):8323–8329. doi: 10.1021/bi00193a020. [DOI] [PubMed] [Google Scholar]
- Reymond M. T., Merutka G., Dyson H. J., Wright P. E. Folding propensities of peptide fragments of myoglobin. Protein Sci. 1997 Mar;6(3):706–716. doi: 10.1002/pro.5560060320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silva J. L., Foguel D., Da Poian A. T., Prevelige P. E. The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Curr Opin Struct Biol. 1996 Apr;6(2):166–175. doi: 10.1016/s0959-440x(96)80071-6. [DOI] [PubMed] [Google Scholar]
- Silva J. L., Miles E. W., Weber G. Pressure dissociation and conformational drift of the beta dimer of tryptophan synthase. Biochemistry. 1986 Sep 23;25(19):5780–5786. doi: 10.1021/bi00367a065. [DOI] [PubMed] [Google Scholar]
- Silva J. L., Weber G. Pressure stability of proteins. Annu Rev Phys Chem. 1993;44:89–113. doi: 10.1146/annurev.pc.44.100193.000513. [DOI] [PubMed] [Google Scholar]
- Soman K. V., Karimi A., Case D. A. Unfolding of an alpha-helix in water. Biopolymers. 1991 Oct 15;31(12):1351–1361. doi: 10.1002/bip.360311202. [DOI] [PubMed] [Google Scholar]
- Takano T. Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol. 1977 Mar 5;110(3):537–568. doi: 10.1016/s0022-2836(77)80111-3. [DOI] [PubMed] [Google Scholar]
- Tilton R. F., Jr, Petsko G. A. A structure of sperm whale myoglobin at a nitrogen gas pressure of 145 atmospheres. Biochemistry. 1988 Aug 23;27(17):6574–6582. doi: 10.1021/bi00417a057. [DOI] [PubMed] [Google Scholar]
- Tirado-Rives J., Jorgensen W. L. Molecular dynamics simulations of the unfolding of apomyoglobin in water. Biochemistry. 1993 Apr 27;32(16):4175–4184. doi: 10.1021/bi00067a004. [DOI] [PubMed] [Google Scholar]
- Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
- Yayanos A. A. Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol. 1995;49:777–805. doi: 10.1146/annurev.mi.49.100195.004021. [DOI] [PubMed] [Google Scholar]
- Zipp A., Kauzmann W. Pressure denaturation of metmyoglobin. Biochemistry. 1973 Oct 9;12(21):4217–4228. doi: 10.1021/bi00745a028. [DOI] [PubMed] [Google Scholar]