Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2384–2390. doi: 10.1002/pro.5560071115

The interaction between the chaperone SecB and its ligands: evidence for multiple subsites for binding.

L L Randall 1, S J Hardy 1, T B Topping 1, V F Smith 1, J E Bruce 1, R D Smith 1
PMCID: PMC2143860  PMID: 9828004

Abstract

The chaperone protein SecB is dedicated to the facilitation of export of proteins from the cytoplasm to the periplasm and outer membrane of Escherichia coli. It functions to bind and deliver precursors of exported proteins to the membrane-associated translocation apparatus before the precursors fold into their native stable structures. The binding to SecB is characterized by a high selectivity for ligands having nonnative structure but a low specificity for consensus in sequence among the ligands. A model previously presented (Randall LL, Hardy SJS, 1995, Trends Biochem Sci 20:65-69) to rationalize the ability of SecB to distinguish between the native and nonnative states of a polypeptide proposes that the SecB tetramer contains two types of subsites for ligand binding: one kind that would interact with extended flexible stretches of polypeptides and the other with hydrophobic regions. Here we have used titration calorimetry, analytical ultracentrifugation, and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to obtain evidence that such distinguishable subsites exist.

Full Text

The Full Text of this article is available as a PDF (749.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruce J. E., Smith V. F., Liu C., Randall L. L., Smith R. D. The observation of chaperone-ligand noncovalent complexes with electrospray ionization mass spectrometry. Protein Sci. 1998 May;7(5):1180–1185. doi: 10.1002/pro.5560070512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Collier D. N. SecB: a molecular chaperone of Escherichia coli protein secretion pathway. Adv Protein Chem. 1993;44:151–193. doi: 10.1016/s0065-3233(08)60567-7. [DOI] [PubMed] [Google Scholar]
  3. Fekkes P., den Blaauwen T., Driessen A. J. Diffusion-limited interaction between unfolded polypeptides and the Escherichia coli chaperone SecB. Biochemistry. 1995 Aug 8;34(31):10078–10085. doi: 10.1021/bi00031a032. [DOI] [PubMed] [Google Scholar]
  4. Hardy S. J., Randall L. L. A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperone SecB. Science. 1991 Jan 25;251(4992):439–443. doi: 10.1126/science.1989077. [DOI] [PubMed] [Google Scholar]
  5. Hardy S. J., Randall L. L. Recognition of ligands by SecB, a molecular chaperone involved in bacterial protein export. Philos Trans R Soc Lond B Biol Sci. 1993 Mar 29;339(1289):343–354. doi: 10.1098/rstb.1993.0033. [DOI] [PubMed] [Google Scholar]
  6. Khisty V. J., Munske G. R., Randall L. L. Mapping of the binding frame for the chaperone SecB within a natural ligand, galactose-binding protein. J Biol Chem. 1995 Oct 27;270(43):25920–25927. doi: 10.1074/jbc.270.43.25920. [DOI] [PubMed] [Google Scholar]
  7. Kumamoto C. A. Molecular chaperones and protein translocation across the Escherichia coli inner membrane. Mol Microbiol. 1991 Jan;5(1):19–22. doi: 10.1111/j.1365-2958.1991.tb01821.x. [DOI] [PubMed] [Google Scholar]
  8. Randall L. L., Hardy S. J. High selectivity with low specificity: how SecB has solved the paradox of chaperone binding. Trends Biochem Sci. 1995 Feb;20(2):65–69. doi: 10.1016/s0968-0004(00)88959-8. [DOI] [PubMed] [Google Scholar]
  9. Randall L. L. Peptide binding by chaperone SecB: implications for recognition of nonnative structure. Science. 1992 Jul 10;257(5067):241–245. doi: 10.1126/science.1631545. [DOI] [PubMed] [Google Scholar]
  10. Randall L. L., Topping T. B., Hardy S. J. No specific recognition of leader peptide by SecB, a chaperone involved in protein export. Science. 1990 May 18;248(4957):860–863. doi: 10.1126/science.2188362. [DOI] [PubMed] [Google Scholar]
  11. Randall L. L., Topping T. B., Suciu D., Hardy S. J. Calorimetric analyses of the interaction between SecB and its ligands. Protein Sci. 1998 May;7(5):1195–1200. doi: 10.1002/pro.5560070514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shortle D., Meeker A. K. Residual structure in large fragments of staphylococcal nuclease: effects of amino acid substitutions. Biochemistry. 1989 Feb 7;28(3):936–944. doi: 10.1021/bi00429a003. [DOI] [PubMed] [Google Scholar]
  13. Smith V. F., Hardy S. J., Randall L. L. Determination of the binding frame of the chaperone SecB within the physiological ligand oligopeptide-binding protein. Protein Sci. 1997 Aug;6(8):1746–1755. doi: 10.1002/pro.5560060815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smith V. F., Schwartz B. L., Randall L. L., Smith R. D. Electrospray mass spectrometric investigation of the chaperone SecB. Protein Sci. 1996 Mar;5(3):488–494. doi: 10.1002/pro.5560050310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stenberg G., Fersht A. R. Folding of barnase in the presence of the molecular chaperone SecB. J Mol Biol. 1997 Nov 28;274(2):268–275. doi: 10.1006/jmbi.1997.1398. [DOI] [PubMed] [Google Scholar]
  16. Tolić L. P., Bruce J. E., Lei Q. P., Anderson G. A., Smith R. D. In-trap cleanup of proteins from electrospray ionization using soft sustained off-resonance irradiation with fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 1998 Jan 15;70(2):405–408. doi: 10.1021/ac970828c. [DOI] [PubMed] [Google Scholar]
  17. Topping T. B., Randall L. L. Chaperone SecB from Escherichia coli mediates kinetic partitioning via a dynamic equilibrium with its ligands. J Biol Chem. 1997 Aug 1;272(31):19314–19318. doi: 10.1074/jbc.272.31.19314. [DOI] [PubMed] [Google Scholar]
  18. Topping T. B., Randall L. L. Determination of the binding frame within a physiological ligand for the chaperone SecB. Protein Sci. 1994 May;3(5):730–736. doi: 10.1002/pro.5560030502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES