Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2281–2286. doi: 10.1002/pro.5560071105

Solution structures of stromelysin complexed to thiadiazole inhibitors.

B J Stockman 1, D J Waldon 1, J A Gates 1, T A Scahill 1, D A Kloosterman 1, S A Mizsak 1, E J Jacobsen 1, K L Belonga 1, M A Mitchell 1, B Mao 1, J D Petke 1, L Goodman 1, E A Powers 1, S R Ledbetter 1, P S Kaytes 1, G Vogeli 1, V P Marshall 1, G L Petzold 1, R A Poorman 1
PMCID: PMC2143861  PMID: 9827994

Abstract

Unregulated or overexpressed matrix metalloproteinases (MMPs), including stromelysin, collagenase, and gelatinase. have been implicated in several pathological conditions including arthritis and cancer. Small-molecule MMP inhibitors may have therapeutic value in the treatment of these diseases. In this regard, the solution structures of two stromelysin/ inhibitor complexes have been investigated using 1H, 13C, and 15N NMR spectroscopy. Both-inhibitors are members of a novel class of matrix metalloproteinase inhibitor that contain a thiadiazole group and that interact with stromelysin in a manner distinct from other classes of inhibitors. The inhibitors coordinate the catalytic zinc atom through their exocyclic sulfur atom, with the remainder of the ligand extending into the S1-S3 side of the active site. The binding of inhibitor containing a protonated or fluorinated aromatic ring was investigated using 1H and 19F NMR spectroscopy. The fluorinated ring was found to have a reduced ring-flip rate compared to the protonated version. A strong, coplanar interaction between the fluorinated ring of the inhibitor and the aromatic ring of Tyr155 is proposed to account for the reduced ring-flip rate and for the increase in binding affinity observed for the fluorinated inhibitor compared to the protonated inhibitor. Binding interactions observed for the thiadiazole class of ligands have implications for the design of matrix metalloproteinase inhibitors.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker J. W., Marcy A. I., Rokosz L. L., Axel M. G., Burbaum J. J., Fitzgerald P. M., Cameron P. M., Esser C. K., Hagmann W. K., Hermes J. D. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Sci. 1995 Oct;4(10):1966–1976. doi: 10.1002/pro.5560041002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borkakoti N., Winkler F. K., Williams D. H., D'Arcy A., Broadhurst M. J., Brown P. A., Johnson W. H., Murray E. J. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat Struct Biol. 1994 Feb;1(2):106–110. doi: 10.1038/nsb0294-106. [DOI] [PubMed] [Google Scholar]
  3. Bovy P. R., Getman D. P., Matsoukas J. M., Moore G. J. Influence of polyfluorination of the phenylalanine ring of angiotensin II on conformation and biological activity. Biochim Biophys Acta. 1991 Aug 9;1079(1):23–28. doi: 10.1016/0167-4838(91)90019-v. [DOI] [PubMed] [Google Scholar]
  4. Cawston T. E. Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Pharmacol Ther. 1996;70(3):163–182. doi: 10.1016/0163-7258(96)00015-0. [DOI] [PubMed] [Google Scholar]
  5. Dhanaraj V., Ye Q. Z., Johnson L. L., Hupe D. J., Ortwine D. F., Dunbar J. B., Jr, Rubin J. R., Pavlovsky A., Humblet C., Blundell T. L. X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure. 1996 Apr 15;4(4):375–386. doi: 10.1016/s0969-2126(96)00043-3. [DOI] [PubMed] [Google Scholar]
  6. Finzel B. C., Baldwin E. T., Bryant G. L., Jr, Hess G. F., Wilks J. W., Trepod C. M., Mott J. E., Marshall V. P., Petzold G. L., Poorman R. A. Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity. Protein Sci. 1998 Oct;7(10):2118–2126. doi: 10.1002/pro.5560071008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gooley P. R., Johnson B. A., Marcy A. I., Cuca G. C., Salowe S. P., Hagmann W. K., Esser C. K., Springer J. P. Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR. Biochemistry. 1993 Dec 7;32(48):13098–13108. doi: 10.1021/bi00211a020. [DOI] [PubMed] [Google Scholar]
  8. Grams F., Crimmin M., Hinnes L., Huxley P., Pieper M., Tschesche H., Bode W. Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry. 1995 Oct 31;34(43):14012–14020. doi: 10.1021/bi00043a007. [DOI] [PubMed] [Google Scholar]
  9. Lovejoy B., Cleasby A., Hassell A. M., Longley K., Luther M. A., Weigl D., McGeehan G., McElroy A. B., Drewry D., Lambert M. H. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science. 1994 Jan 21;263(5145):375–377. doi: 10.1126/science.8278810. [DOI] [PubMed] [Google Scholar]
  10. MacDougall J. R., Matrisian L. M. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev. 1995 Dec;14(4):351–362. doi: 10.1007/BF00690603. [DOI] [PubMed] [Google Scholar]
  11. Reinemer P., Grams F., Huber R., Kleine T., Schnierer S., Piper M., Tschesche H., Bode W. Structural implications for the role of the N terminus in the 'superactivation' of collagenases. A crystallographic study. FEBS Lett. 1994 Jan 31;338(2):227–233. doi: 10.1016/0014-5793(94)80370-6. [DOI] [PubMed] [Google Scholar]
  12. Spurlino J. C., Smallwood A. M., Carlton D. D., Banks T. M., Vavra K. J., Johnson J. S., Cook E. R., Falvo J., Wahl R. C., Pulvino T. A. 1.56 A structure of mature truncated human fibroblast collagenase. Proteins. 1994 Jun;19(2):98–109. doi: 10.1002/prot.340190203. [DOI] [PubMed] [Google Scholar]
  13. Stams T., Spurlino J. C., Smith D. L., Wahl R. C., Ho T. F., Qoronfleh M. W., Banks T. M., Rubin B. Structure of human neutrophil collagenase reveals large S1' specificity pocket. Nat Struct Biol. 1994 Feb;1(2):119–123. doi: 10.1038/nsb0294-119. [DOI] [PubMed] [Google Scholar]
  14. Stockman B. J., Richardson T. E., Swenson R. P. Structural changes caused by site-directed mutagenesis of tyrosine-98 in Desulfovibrio vulgaris flavodoxin delineated by 1H and 15N NMR spectroscopy: implications for redox potential modulation. Biochemistry. 1994 Dec 27;33(51):15298–15308. doi: 10.1021/bi00255a011. [DOI] [PubMed] [Google Scholar]
  15. Van Doren S. R., Kurochkin A. V., Hu W., Ye Q. Z., Johnson L. L., Hupe D. J., Zuiderweg E. R. Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor. Protein Sci. 1995 Dec;4(12):2487–2498. doi: 10.1002/pro.5560041205. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES