Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2256–2264. doi: 10.1002/pro.5560071103

Semisynthesis of cytotoxic proteins using a modified protein splicing element.

T C Evans Jr 1, J Benner 1, M Q Xu 1
PMCID: PMC2143866  PMID: 9827992

Abstract

Two cytotoxic proteins, bovine pancreatic ribonuclease A (RNase A), and a restriction endonuclease from Haemophilus parainfluenzae (HpaI), were produced using a novel semisynthetic approach that utilizes a protein splicing element, an intein, to generate a reactive thioester at the C-terminus of a recombinant protein. Nucleophilic attack on this thioester by the N-terminal cysteine of a synthetic peptide ultimately leads to the ligation of the two reactants through a native peptide bond. This strategy was used to produce RNase A and HpaI by isolating inactive truncated forms of these proteins, the first 109 and 223 amino acids of RNase A and HpaI, respectively, as fusion proteins consisting of the target protein, an intein, and a chitin binding domain. Thiol-induced cleavage of the precursor led to the liberation of the target protein with a C-terminal thioester-tag. Addition of synthetic peptides representing the amino acids missing from the truncated forms led to the generation of full-length products that displayed catalytic activity indicative of the wild-type enzymes. The turnover numbers and Km for ligated and renatured RNase A were 8.2 s(-1) and 1.5 mM, in good agreement with reported values of 8.3 s(-1) and 1.2 mM (Hodges & Merrifield, 1975). Ligated HpaI had a specific activity of 0.5-1.5 x 10(6) U/mg, which compared favorably with the expected value of 1-2 x 10(6) U/mg (J. Benner, unpubl. obs.). Besides assisting in the production of cytotoxic proteins, this technique could allow the easy insertion of unnatural amino acids into a protein sequence.

Full Text

The Full Text of this article is available as a PDF (5.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang T. K., Jackson D. Y., Burnier J. P., Wells J. A. Subtiligase: a tool for semisynthesis of proteins. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12544–12548. doi: 10.1073/pnas.91.26.12544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chong S., Mersha F. B., Comb D. G., Scott M. E., Landry D., Vence L. M., Perler F. B., Benner J., Kucera R. B., Hirvonen C. A. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. 1997 Jun 19;192(2):271–281. doi: 10.1016/s0378-1119(97)00105-4. [DOI] [PubMed] [Google Scholar]
  3. Chong S., Shao Y., Paulus H., Benner J., Perler F. B., Xu M. Q. Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. 1996 Sep 6;271(36):22159–22168. doi: 10.1074/jbc.271.36.22159. [DOI] [PubMed] [Google Scholar]
  4. Chong S., Williams K. S., Wotkowicz C., Xu M. Q. Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. 1998 Apr 24;273(17):10567–10577. doi: 10.1074/jbc.273.17.10567. [DOI] [PubMed] [Google Scholar]
  5. Dawson P. E., Muir T. W., Clark-Lewis I., Kent S. B. Synthesis of proteins by native chemical ligation. Science. 1994 Nov 4;266(5186):776–779. doi: 10.1126/science.7973629. [DOI] [PubMed] [Google Scholar]
  6. Duplay P., Bedouelle H., Fowler A., Zabin I., Saurin W., Hofnung M. Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J Biol Chem. 1984 Aug 25;259(16):10606–10613. [PubMed] [Google Scholar]
  7. Erlanson D. A., Chytil M., Verdine G. L. The leucine zipper domain controls the orientation of AP-1 in the NFAT.AP-1.DNA complex. Chem Biol. 1996 Dec;3(12):981–991. doi: 10.1016/s1074-5521(96)90165-9. [DOI] [PubMed] [Google Scholar]
  8. Fields C. G., Lloyd D. H., Macdonald R. L., Otteson K. M., Noble R. L. HBTU activation for automated Fmoc solid-phase peptide synthesis. Pept Res. 1991 Mar-Apr;4(2):95–101. [PubMed] [Google Scholar]
  9. Hodges R. S., Merrifield R. B. The role of serine-123 in the activity and specificity of ribonuclease. Reactivation of ribonuclease 1-118 by the synthetic COOH-terminal tetradecapeptide, ribonuclease 111-124, and its O-methylserine and alanine analogs. J Biol Chem. 1975 Feb 25;250(4):1231–1241. [PubMed] [Google Scholar]
  10. Ito H., Shimato H., Sadaoka A., Kotani H., Kimizuka F., Kato I. Cloning and expression of the HpaI restriction-modification genes. Nucleic Acids Res. 1992 Feb 25;20(4):705–709. doi: 10.1093/nar/20.4.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jackson D. Y., Burnier J., Quan C., Stanley M., Tom J., Wells J. A. A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science. 1994 Oct 14;266(5183):243–247. doi: 10.1126/science.7939659. [DOI] [PubMed] [Google Scholar]
  12. Kane P. M., Yamashiro C. T., Wolczyk D. F., Neff N., Goebl M., Stevens T. H. Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science. 1990 Nov 2;250(4981):651–657. doi: 10.1126/science.2146742. [DOI] [PubMed] [Google Scholar]
  13. Kent S. B. Chemical synthesis of peptides and proteins. Annu Rev Biochem. 1988;57:957–989. doi: 10.1146/annurev.bi.57.070188.004521. [DOI] [PubMed] [Google Scholar]
  14. Lin M. C. The structural roles of amino acid residues near the carboxyl terminus of bovine pancreatic ribonuclease A. J Biol Chem. 1970 Dec 25;245(24):6726–6731. [PubMed] [Google Scholar]
  15. Liu C. F., Tam J. P. Peptide segment ligation strategy without use of protecting groups. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6584–6588. doi: 10.1073/pnas.91.14.6584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lyles M. M., Gilbert H. F. Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry. 1991 Jan 22;30(3):613–619. doi: 10.1021/bi00217a004. [DOI] [PubMed] [Google Scholar]
  17. Nakagawa S. H., Tager H. S. Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. Steric and conformational effects. J Biol Chem. 1986 Jun 5;261(16):7332–7341. [PubMed] [Google Scholar]
  18. Noren C. J., Anthony-Cahill S. J., Griffith M. C., Schultz P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science. 1989 Apr 14;244(4901):182–188. doi: 10.1126/science.2649980. [DOI] [PubMed] [Google Scholar]
  19. Offord R. E. Protein engineering by chemical means? Protein Eng. 1987 Jun;1(3):151–157. doi: 10.1093/protein/1.3.151. [DOI] [PubMed] [Google Scholar]
  20. Perler F. B., Davis E. O., Dean G. E., Gimble F. S., Jack W. E., Neff N., Noren C. J., Thorner J., Belfort M. Protein splicing elements: inteins and exteins--a definition of terms and recommended nomenclature. Nucleic Acids Res. 1994 Apr 11;22(7):1125–1127. doi: 10.1093/nar/22.7.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roy R. P., Acharya A. S. Semisynthesis of hemoglobin. Methods Enzymol. 1994;231:194–215. doi: 10.1016/0076-6879(94)31014-9. [DOI] [PubMed] [Google Scholar]
  22. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  23. Shao Y., Xu M. Q., Paulus H. Protein splicing: characterization of the aminosuccinimide residue at the carboxyl terminus of the excised intervening sequence. Biochemistry. 1995 Aug 29;34(34):10844–10850. doi: 10.1021/bi00034a017. [DOI] [PubMed] [Google Scholar]
  24. Telenti A., Southworth M., Alcaide F., Daugelat S., Jacobs W. R., Jr, Perler F. B. The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. 1997 Oct;179(20):6378–6382. doi: 10.1128/jb.179.20.6378-6382.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wallace C. J. Peptide ligation and semisynthesis. Curr Opin Biotechnol. 1995 Aug;6(4):403–410. doi: 10.1016/0958-1669(95)80069-7. [DOI] [PubMed] [Google Scholar]
  26. Wallace C. J. Understanding cytochrome c function: engineering protein structure by semisynthesis. FASEB J. 1993 Apr 1;7(6):505–515. doi: 10.1096/fasebj.7.6.8386119. [DOI] [PubMed] [Google Scholar]
  27. Watanabe T., Ito Y., Yamada T., Hashimoto M., Sekine S., Tanaka H. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol. 1994 Aug;176(15):4465–4472. doi: 10.1128/jb.176.15.4465-4472.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wlodawer A., Svensson L. A., Sjölin L., Gilliland G. L. Structure of phosphate-free ribonuclease A refined at 1.26 A. Biochemistry. 1988 Apr 19;27(8):2705–2717. doi: 10.1021/bi00408a010. [DOI] [PubMed] [Google Scholar]
  29. Woods A. C., Guillemette J. G., Parrish J. C., Smith M., Wallace C. J. Synergy in protein engineering. Mutagenic manipulation of protein structure to simplify semisynthesis. J Biol Chem. 1996 Dec 13;271(50):32008–32015. doi: 10.1074/jbc.271.50.32008. [DOI] [PubMed] [Google Scholar]
  30. Xu M. Q., Comb D. G., Paulus H., Noren C. J., Shao Y., Perler F. B. Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. 1994 Dec 1;13(23):5517–5522. doi: 10.1002/j.1460-2075.1994.tb06888.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xu M. Q., Perler F. B. The mechanism of protein splicing and its modulation by mutation. EMBO J. 1996 Oct 1;15(19):5146–5153. [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES