Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2345–2353. doi: 10.1002/pro.5560071111

Stabilizing the subtilisin BPN' pro-domain by phage display selection: how restrictive is the amino acid code for maximum protein stability?

B Ruan 1, J Hoskins 1, L Wang 1, P N Bryan 1
PMCID: PMC2143871  PMID: 9828000

Abstract

We have devised a procedure using monovalent phage display to select for stable mutants in the pro-domain of the serine protease, subtilisin BPN'. In complex with subtilisin, the pro-domain assumes a compact structure with a four-stranded antiparallel beta-sheet and two three-turn alpha-helices. When isolated, however, the pro-domain is 97% unfolded. These experiments use combinatorial mutagenesis to select for stabilizing amino acid combinations at a particular structural locus and determine how many combinations are close to the maximum protein stability. The selection for stability is based on the fact that the independent stability of the pro-domain is very low and that binding to subtilisin is thermodynamically linked to folding. Two libraries of mutant pro-domains were constructed and analyzed to determine how many combinations of amino acids at a particular structural locus result in the maximum stability. A library comprises all combinations of four amino acids at a structural locus. Previous studies using combinatorial genetics have shown that many different combinations of amino acids can be accommodated in a selected locus without destroying function. The present results indicate that the number of sequence combinations at a structural locus, which are close to the maximum stability, is small. The most striking example is a selection at an interior locus of the pro-domain. After two rounds of phagemid selection, one amino acid combination is found in 40% of sequenced mutants. The most frequently selected mutant has a deltaG(unfolding) = 4 kcal/mol at 25 degrees C, an increase of 6 kcal/mol relative to the naturally occurring sequence. Some implications of these results on the amount of sequence information needed to specify a unique tertiary fold are discussed. Apart from possible implications on the folding code, the phage display selection described here should be useful in optimizing the stability of other proteins, which can be displayed on the phage surface.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander P., Fahnestock S., Lee T., Orban J., Bryan P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry. 1992 Apr 14;31(14):3597–3603. doi: 10.1021/bi00129a007. [DOI] [PubMed] [Google Scholar]
  2. Becktel W. J., Schellman J. A. Protein stability curves. Biopolymers. 1987 Nov;26(11):1859–1877. doi: 10.1002/bip.360261104. [DOI] [PubMed] [Google Scholar]
  3. Bryan P., Alexander P., Strausberg S., Schwarz F., Lan W., Gilliland G., Gallagher D. T. Energetics of folding subtilisin BPN'. Biochemistry. 1992 Jun 2;31(21):4937–4945. doi: 10.1021/bi00136a003. [DOI] [PubMed] [Google Scholar]
  4. Bryan P., Wang L., Hoskins J., Ruvinov S., Strausberg S., Alexander P., Almog O., Gilliland G., Gallagher T. Catalysis of a protein folding reaction: mechanistic implications of the 2.0 A structure of the subtilisin-prodomain complex. Biochemistry. 1995 Aug 15;34(32):10310–10318. doi: 10.1021/bi00032a026. [DOI] [PubMed] [Google Scholar]
  5. Cordes M. H., Davidson A. R., Sauer R. T. Sequence space, folding and protein design. Curr Opin Struct Biol. 1996 Feb;6(1):3–10. doi: 10.1016/s0959-440x(96)80088-1. [DOI] [PubMed] [Google Scholar]
  6. Desjarlais J. R., Handel T. M. De novo design of the hydrophobic cores of proteins. Protein Sci. 1995 Oct;4(10):2006–2018. doi: 10.1002/pro.5560041006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodman E. M., Kim P. S. Folding of a peptide corresponding to the alpha-helix in bovine pancreatic trypsin inhibitor. Biochemistry. 1989 May 16;28(10):4343–4347. doi: 10.1021/bi00436a033. [DOI] [PubMed] [Google Scholar]
  8. Gu H., Yi Q., Bray S. T., Riddle D. S., Shiau A. K., Baker D. A phage display system for studying the sequence determinants of protein folding. Protein Sci. 1995 Jun;4(6):1108–1117. doi: 10.1002/pro.5560040609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hawkins R. E., Russell S. J., Winter G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J Mol Biol. 1992 Aug 5;226(3):889–896. doi: 10.1016/0022-2836(92)90639-2. [DOI] [PubMed] [Google Scholar]
  10. Hoogenboom H. R., Griffiths A. D., Johnson K. S., Chiswell D. J., Hudson P., Winter G. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991 Aug 11;19(15):4133–4137. doi: 10.1093/nar/19.15.4133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ikemura H., Takagi H., Inouye M. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem. 1987 Jun 5;262(16):7859–7864. [PubMed] [Google Scholar]
  12. Kamtekar S., Schiffer J. M., Xiong H., Babik J. M., Hecht M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science. 1993 Dec 10;262(5140):1680–1685. doi: 10.1126/science.8259512. [DOI] [PubMed] [Google Scholar]
  13. Lattman E. E., Rose G. D. Protein folding--what's the question? Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):439–441. doi: 10.1073/pnas.90.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laurents D. V., Subbiah S., Levitt M. Different protein sequences can give rise to highly similar folds through different stabilizing interactions. Protein Sci. 1994 Nov;3(11):1938–1944. doi: 10.1002/pro.5560031105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lazar G. A., Desjarlais J. R., Handel T. M. De novo design of the hydrophobic core of ubiquitin. Protein Sci. 1997 Jun;6(6):1167–1178. doi: 10.1002/pro.5560060605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lim W. A., Sauer R. T. The role of internal packing interactions in determining the structure and stability of a protein. J Mol Biol. 1991 May 20;219(2):359–376. doi: 10.1016/0022-2836(91)90570-v. [DOI] [PubMed] [Google Scholar]
  17. Merutka G., Shalongo W., Stellwagen E. A model peptide with enhanced helicity. Biochemistry. 1991 Apr 30;30(17):4245–4248. doi: 10.1021/bi00231a020. [DOI] [PubMed] [Google Scholar]
  18. Power S. D., Adams R. M., Wells J. A. Secretion and autoproteolytic maturation of subtilisin. Proc Natl Acad Sci U S A. 1986 May;83(10):3096–3100. doi: 10.1073/pnas.83.10.3096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
  20. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  21. Reidhaar-Olson J. F., Sauer R. T. Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science. 1988 Jul 1;241(4861):53–57. doi: 10.1126/science.3388019. [DOI] [PubMed] [Google Scholar]
  22. Ruvinov S., Wang L., Ruan B., Almog O., Gilliland G. L., Eisenstein E., Bryan P. N. Engineering the independent folding of the subtilisin BPN' prodomain: analysis of two-state folding versus protein stability. Biochemistry. 1997 Aug 26;36(34):10414–10421. doi: 10.1021/bi9703958. [DOI] [PubMed] [Google Scholar]
  23. Smith G. P., Scott J. K. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 1993;217:228–257. doi: 10.1016/0076-6879(93)17065-d. [DOI] [PubMed] [Google Scholar]
  24. Specthrie L., Bullitt E., Horiuchi K., Model P., Russel M., Makowski L. Construction of a microphage variant of filamentous bacteriophage. J Mol Biol. 1992 Dec 5;228(3):720–724. doi: 10.1016/0022-2836(92)90858-h. [DOI] [PubMed] [Google Scholar]
  25. Strausberg S., Alexander P., Wang L., Schwarz F., Bryan P. Catalysis of a protein folding reaction: thermodynamic and kinetic analysis of subtilisin BPN' interactions with its propeptide fragment. Biochemistry. 1993 Aug 17;32(32):8112–8119. doi: 10.1021/bi00083a009. [DOI] [PubMed] [Google Scholar]
  26. Vasantha N., Thompson L. D., Rhodes C., Banner C., Nagle J., Filpula D. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol. 1984 Sep;159(3):811–819. doi: 10.1128/jb.159.3.811-819.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang L., Ruan B., Ruvinov S., Bryan P. N. Engineering the independent folding of the subtilisin BPN' pro-domain: correlation of pro-domain stability with the rate of subtilisin folding. Biochemistry. 1998 Mar 3;37(9):3165–3171. doi: 10.1021/bi972741r. [DOI] [PubMed] [Google Scholar]
  28. Wang L., Ruvinov S., Strausberg S., Gallagher D. T., Gilliland G., Bryan P. N. Prodomain mutations at the subtilisin interface: correlation of binding energy and the rate of catalyzed folding. Biochemistry. 1995 Nov 28;34(47):15415–15420. doi: 10.1021/bi00047a004. [DOI] [PubMed] [Google Scholar]
  29. Wells J. A., Ferrari E., Henner D. J., Estell D. A., Chen E. Y. Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 1983 Nov 25;11(22):7911–7925. doi: 10.1093/nar/11.22.7911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. West M. W., Hecht M. H. Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins. Protein Sci. 1995 Oct;4(10):2032–2039. doi: 10.1002/pro.5560041008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES