Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Nov;7(11):2237–2248. doi: 10.1002/pro.5560071101

Mapping the lifetimes of local opening events in a native state protein.

B B Kragelund 1, B Heinemann 1, J Knudsen 1, F M Poulsen 1
PMCID: PMC2143873  PMID: 9827990

Abstract

The rate constants for the processes that lead to local opening and closing of the structures around hydrogen bonds in native proteins have been determined for most of the secondary structure hydrogen bonds in the four-helix protein acyl coenzyme A binding protein. In an analysis that combines these results with the energies of activation of the opening processes and the stability of the local structures, three groups of residues in the protein structure have been identified. In one group, the structures around the hydrogen bonds have frequent openings, every 600 to 1,500 s, and long lifetimes in the open state, around 1 s. In another group of local structures, the local opening is a very rare event that takes place only every 15 to 60 h. For these the lifetime in the open state is also around 1 s. The majority of local structures have lifetimes between 2,000 and 20,000 s and relatively short lifetimes of the open state in the range between 30 and 400 ms. Mapping of these groups of amides to the tertiary structure shows that the openings of the local structures are not cooperative at native conditions, and they rarely if ever lead to global unfolding. The results suggest a mechanism of hydrogen exchange by progressive local openings.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen K. V., Poulsen F. M. The three-dimensional structure of acyl-coenzyme A binding protein from bovine liver: structural refinement using heteronuclear multidimensional NMR spectroscopy. J Biomol NMR. 1993 May;3(3):271–284. doi: 10.1007/BF00212514. [DOI] [PubMed] [Google Scholar]
  2. Andersen K. V., Poulsen F. M. Three-dimensional structure in solution of acyl-coenzyme A binding protein from bovine liver. J Mol Biol. 1992 Aug 20;226(4):1131–1141. doi: 10.1016/0022-2836(92)91057-v. [DOI] [PubMed] [Google Scholar]
  3. Bai Y., Sosnick T. R., Mayne L., Englander S. W. Protein folding intermediates: native-state hydrogen exchange. Science. 1995 Jul 14;269(5221):192–197. doi: 10.1126/science.7618079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clarke J., Fersht A. R. An evaluation of the use of hydrogen exchange at equilibrium to probe intermediates on the protein folding pathway. Fold Des. 1996;1(4):243–254. doi: 10.1016/S1359-0278(96)00038-7. [DOI] [PubMed] [Google Scholar]
  5. Englander S. W., Downer N. W., Teitelbaum H. Hydrogen exchange. Annu Rev Biochem. 1972;41:903–924. doi: 10.1146/annurev.bi.41.070172.004351. [DOI] [PubMed] [Google Scholar]
  6. Englander S. W. Measurement of structural and free energy changes in hemoglobin by hydrogen exchange methods. Ann N Y Acad Sci. 1975 Apr 15;244:10–27. doi: 10.1111/j.1749-6632.1975.tb41518.x. [DOI] [PubMed] [Google Scholar]
  7. HVIDT A. A DISCUSSION OF THE PH DEPENDENCE OF THE HYDROGEN-DEUTERIUM EXCHANGE OF PROTEINS. C R Trav Lab Carlsberg. 1964;34:299–317. [PubMed] [Google Scholar]
  8. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  9. Kim K. S., Fuchs J. A., Woodward C. K. Hydrogen exchange identifies native-state motional domains important in protein folding. Biochemistry. 1993 Sep 21;32(37):9600–9608. doi: 10.1021/bi00088a012. [DOI] [PubMed] [Google Scholar]
  10. Kim K. S., Woodward C. Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor. Biochemistry. 1993 Sep 21;32(37):9609–9613. doi: 10.1021/bi00088a013. [DOI] [PubMed] [Google Scholar]
  11. Kjaer M., Andersen K. V., Poulsen F. M. Automated and semiautomated analysis of homo- and heteronuclear multidimensional nuclear magnetic resonance spectra of proteins: the program Pronto. Methods Enzymol. 1994;239:288–307. doi: 10.1016/s0076-6879(94)39010-x. [DOI] [PubMed] [Google Scholar]
  12. Kragelund B. B., Andersen K. V., Madsen J. C., Knudsen J., Poulsen F. M. Three-dimensional structure of the complex between acyl-coenzyme A binding protein and palmitoyl-coenzyme A. J Mol Biol. 1993 Apr 20;230(4):1260–1277. doi: 10.1006/jmbi.1993.1240. [DOI] [PubMed] [Google Scholar]
  13. Kragelund B. B., Højrup P., Jensen M. S., Schjerling C. K., Juul E., Knudsen J., Poulsen F. M. Fast and one-step folding of closely and distantly related homologous proteins of a four-helix bundle family. J Mol Biol. 1996 Feb 16;256(1):187–200. doi: 10.1006/jmbi.1996.0076. [DOI] [PubMed] [Google Scholar]
  14. Kragelund B. B., Knudsen J., Poulsen F. M. Local perturbations by ligand binding of hydrogen deuterium exchange kinetics in a four-helix bundle protein, acyl coenzyme A binding protein (ACBP). J Mol Biol. 1995 Jul 28;250(5):695–706. doi: 10.1006/jmbi.1995.0409. [DOI] [PubMed] [Google Scholar]
  15. Kragelund B. B., Robinson C. V., Knudsen J., Dobson C. M., Poulsen F. M. Folding of a four-helix bundle: studies of acyl-coenzyme A binding protein. Biochemistry. 1995 May 30;34(21):7217–7224. doi: 10.1021/bi00021a037. [DOI] [PubMed] [Google Scholar]
  16. Mayo S. L., Baldwin R. L. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science. 1993 Nov 5;262(5135):873–876. doi: 10.1126/science.8235609. [DOI] [PubMed] [Google Scholar]
  17. Mikkelsen J., Højrup P., Nielsen P. F., Roepstorff P., Knudsen J. Amino acid sequence of acyl-CoA-binding protein from cow liver. Biochem J. 1987 Aug 1;245(3):857–861. doi: 10.1042/bj2450857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pedersen T. G., Thomsen N. K., Andersen K. V., Madsen J. C., Poulsen F. M. Determination of the rate constants k1 and k2 of the Linderström-Lang model for protein amide hydrogen exchange. A study of the individual amides in hen egg-white lysozyme. J Mol Biol. 1993 Mar 20;230(2):651–660. doi: 10.1006/jmbi.1993.1176. [DOI] [PubMed] [Google Scholar]
  19. Rischel C., Madsen J. C., Andersen K. V., Poulsen F. M. Comparison of backbone dynamics of apo- and holo-acyl-coenzyme A binding protein using 15N relaxation measurements. Biochemistry. 1994 Nov 29;33(47):13997–14002. doi: 10.1021/bi00251a006. [DOI] [PubMed] [Google Scholar]
  20. Roder H., Wagner G., Wüthrich K. Amide proton exchange in proteins by EX1 kinetics: studies of the basic pancreatic trypsin inhibitor at variable p2H and temperature. Biochemistry. 1985 Dec 3;24(25):7396–7407. doi: 10.1021/bi00346a055. [DOI] [PubMed] [Google Scholar]
  21. Wagner G., Wüthrich K. Structural interpretation of the amide proton exchange in the basic pancreatic trypsin inhibitor and related proteins. J Mol Biol. 1979 Oct 15;134(1):75–94. doi: 10.1016/0022-2836(79)90414-5. [DOI] [PubMed] [Google Scholar]
  22. Woodward C. K., Hilton B. D. Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. Annu Rev Biophys Bioeng. 1979;8:99–127. doi: 10.1146/annurev.bb.08.060179.000531. [DOI] [PubMed] [Google Scholar]
  23. Woodward C., Simon I., Tüchsen E. Hydrogen exchange and the dynamic structure of proteins. Mol Cell Biochem. 1982 Oct 29;48(3):135–160. doi: 10.1007/BF00421225. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES