Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Dec;7(12):2511–2521. doi: 10.1002/pro.5560071204

Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose.

U Hars 1, R Horlacher 1, W Boos 1, W Welte 1, K Diederichs 1
PMCID: PMC2143882  PMID: 9865945

Abstract

The crystal structure of the Escherichia coli trehalose repressor (TreR) in a complex with its inducer trehalose-6-phosphate was determined by the method of multiple isomorphous replacement (MIR) at 2.5 A resolution, followed by the structure determination of TreR in a complex with its noninducer trehalose at 3.1 A resolution. The model consists of residues 61 to 315 comprising the effector binding domain, which forms a dimer as in other members of the LacI family. This domain is composed of two similar subdomains each consisting of a central beta-sheet sandwiched between alpha-helices. The effector binding pocket is at the interface of these subdomains. In spite of different physiological functions, the crystal structures of the two complexes of TreR turned out to be virtually identical to each other with the conformation being similar to those of the effector binding domains of the LacI and PurR in complex with their effector molecules. According to the crystal structure, the noninducer trehalose binds to a similar site as the trehalose portion of trehalose-6-phosphate. The binding affinity for the former is lower than for the latter. The noninducer trehalose thus binds competitively to the repressor. Unlike the phosphorylated inducer molecule, it is incapable of blocking the binding of the repressor headpiece to its operator DNA. The ratio of the concentrations of trehalose-6-phosphate and trehalose thus is used to switch between the two alternative metabolic uses of trehalose as an osmoprotectant and as a carbon source.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqvist J., Luecke H., Quiocho F. A., Warshel A. Dipoles localized at helix termini of proteins stabilize charges. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):2026–2030. doi: 10.1073/pnas.88.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barkley M. D., Riggs A. D., Jobe A., Burgeois S. Interaction of effecting ligands with lac repressor and repressor-operator complex. Biochemistry. 1975 Apr 22;14(8):1700–1712. doi: 10.1021/bi00679a024. [DOI] [PubMed] [Google Scholar]
  3. Boos W., Ehmann U., Bremer E., Middendorf A., Postma P. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem. 1987 Sep 25;262(27):13212–13218. [PubMed] [Google Scholar]
  4. Boos W., Ehmann U., Forkl H., Klein W., Rimmele M., Postma P. Trehalose transport and metabolism in Escherichia coli. J Bacteriol. 1990 Jun;172(6):3450–3461. doi: 10.1128/jb.172.6.3450-3461.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choi K. Y., Zalkin H. Role of the purine repressor hinge sequence in repressor function. J Bacteriol. 1994 Mar;176(6):1767–1772. doi: 10.1128/jb.176.6.1767-1772.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Choi K. Y., Zalkin H. Structural characterization and corepressor binding of the Escherichia coli purine repressor. J Bacteriol. 1992 Oct;174(19):6207–6214. doi: 10.1128/jb.174.19.6207-6214.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Copley R. R., Barton G. J. A structural analysis of phosphate and sulphate binding sites in proteins. Estimation of propensities for binding and conservation of phosphate binding sites. J Mol Biol. 1994 Sep 30;242(4):321–329. doi: 10.1006/jmbi.1994.1583. [DOI] [PubMed] [Google Scholar]
  8. Davidson A. L., Shuman H. A., Nikaido H. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2360–2364. doi: 10.1073/pnas.89.6.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Friedman A. M., Fischmann T. O., Steitz T. A. Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science. 1995 Jun 23;268(5218):1721–1727. doi: 10.1126/science.7792597. [DOI] [PubMed] [Google Scholar]
  10. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol. 1991 Dec;173(24):7918–7924. doi: 10.1128/jb.173.24.7918-7924.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol. 1991 Dec;173(24):7918–7924. doi: 10.1128/jb.173.24.7918-7924.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol Microbiol. 1991 Mar;5(3):575–584. doi: 10.1111/j.1365-2958.1991.tb00728.x. [DOI] [PubMed] [Google Scholar]
  13. Hol W. G., van Duijnen P. T., Berendsen H. J. The alpha-helix dipole and the properties of proteins. Nature. 1978 Jun 8;273(5662):443–446. doi: 10.1038/273443a0. [DOI] [PubMed] [Google Scholar]
  14. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  15. Horlacher R., Boos W. Characterization of TreR, the major regulator of the Escherichia coli trehalose system. J Biol Chem. 1997 May 16;272(20):13026–13032. doi: 10.1074/jbc.272.20.13026. [DOI] [PubMed] [Google Scholar]
  16. Hsieh M., Hensley P., Brenowitz M., Fetrow J. S. A molecular model of the inducer binding domain of the galactose repressor of Escherichia coli. J Biol Chem. 1994 May 13;269(19):13825–13835. [PubMed] [Google Scholar]
  17. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  18. Jobe A., Bourgeois S. lac Repressor-operator interaction. VI. The natural inducer of the lac operon. J Mol Biol. 1972 Aug 28;69(3):397–408. doi: 10.1016/0022-2836(72)90253-7. [DOI] [PubMed] [Google Scholar]
  19. Johnson L. N., O'Reilly M. Control by phosphorylation. Curr Opin Struct Biol. 1996 Dec;6(6):762–769. doi: 10.1016/s0959-440x(96)80005-4. [DOI] [PubMed] [Google Scholar]
  20. Ledvina P. S., Yao N., Choudhary A., Quiocho F. A. Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6786–6791. doi: 10.1073/pnas.93.13.6786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lewis M., Chang G., Horton N. C., Kercher M. A., Pace H. C., Schumacher M. A., Brennan R. G., Lu P. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science. 1996 Mar 1;271(5253):1247–1254. doi: 10.1126/science.271.5253.1247. [DOI] [PubMed] [Google Scholar]
  22. Lucht J. M., Bremer E. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. FEMS Microbiol Rev. 1994 May;14(1):3–20. doi: 10.1111/j.1574-6976.1994.tb00067.x. [DOI] [PubMed] [Google Scholar]
  23. Luecke H., Quiocho F. A. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature. 1990 Sep 27;347(6291):402–406. doi: 10.1038/347402a0. [DOI] [PubMed] [Google Scholar]
  24. Müller-Hill B. Sequence homology between Lac and Gal repressors and three sugar-binding periplasmic proteins. Nature. 1983 Mar 10;302(5904):163–164. doi: 10.1038/302163a0. [DOI] [PubMed] [Google Scholar]
  25. Nguyen C. C., Saier M. H., Jr Phylogenetic, structural and functional analyses of the LacI-GalR family of bacterial transcription factors. FEBS Lett. 1995 Dec 18;377(2):98–102. doi: 10.1016/0014-5793(95)01344-x. [DOI] [PubMed] [Google Scholar]
  26. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pace H. C., Kercher M. A., Lu P., Markiewicz P., Miller J. H., Chang G., Lewis M. Lac repressor genetic map in real space. Trends Biochem Sci. 1997 Sep;22(9):334–339. doi: 10.1016/s0968-0004(97)01104-3. [DOI] [PubMed] [Google Scholar]
  28. Penin F., Geourjon C., Montserret R., Böckmann A., Lesage A., Yang Y. S., Bonod-Bidaud C., Cortay J. C., Nègre D., Cozzone A. J. Three-dimensional structure of the DNA-binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR. J Mol Biol. 1997 Jul 18;270(3):496–510. doi: 10.1006/jmbi.1997.1123. [DOI] [PubMed] [Google Scholar]
  29. Pflugrath J. W., Quiocho F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature. 1985 Mar 21;314(6008):257–260. doi: 10.1038/314257a0. [DOI] [PubMed] [Google Scholar]
  30. Platt T., Files J. G., Weber K. Lac repressor. Specific proteolytic destruction of the NH 2 -terminal region and loss of the deoxyribonucleic acid-binding activity. J Biol Chem. 1973 Jan 10;248(1):110–121. [PubMed] [Google Scholar]
  31. Quiocho F. A., Sack J. S., Vyas N. K. Stabilization of charges on isolated ionic groups sequestered in proteins by polarized peptide units. Nature. 1987 Oct 8;329(6139):561–564. doi: 10.1038/329561a0. [DOI] [PubMed] [Google Scholar]
  32. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  33. Rimmele M., Boos W. Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol. 1994 Sep;176(18):5654–5664. doi: 10.1128/jb.176.18.5654-5664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sack J. S., Saper M. A., Quiocho F. A. Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J Mol Biol. 1989 Mar 5;206(1):171–191. doi: 10.1016/0022-2836(89)90531-7. [DOI] [PubMed] [Google Scholar]
  35. Sali D., Bycroft M., Fersht A. R. Stabilization of protein structure by interaction of alpha-helix dipole with a charged side chain. Nature. 1988 Oct 20;335(6192):740–743. doi: 10.1038/335740a0. [DOI] [PubMed] [Google Scholar]
  36. Schumacher M. A., Choi K. Y., Lu F., Zalkin H., Brennan R. G. Mechanism of corepressor-mediated specific DNA binding by the purine repressor. Cell. 1995 Oct 6;83(1):147–155. doi: 10.1016/0092-8674(95)90243-0. [DOI] [PubMed] [Google Scholar]
  37. Schumacher M. A., Choi K. Y., Zalkin H., Brennan R. G. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science. 1994 Nov 4;266(5186):763–770. doi: 10.1126/science.7973627. [DOI] [PubMed] [Google Scholar]
  38. Schumacher M. A., Glasfeld A., Zalkin H., Brennan R. G. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. J Biol Chem. 1997 Sep 5;272(36):22648–22653. doi: 10.1074/jbc.272.36.22648. [DOI] [PubMed] [Google Scholar]
  39. Spronk C. A., Slijper M., van Boom J. H., Kaptein R., Boelens R. Formation of the hinge helix in the lac repressor is induced upon binding to the lac operator. Nat Struct Biol. 1996 Nov;3(11):916–919. doi: 10.1038/nsb1196-916. [DOI] [PubMed] [Google Scholar]
  40. Strøm A. R., Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol. 1993 Apr;8(2):205–210. doi: 10.1111/j.1365-2958.1993.tb01564.x. [DOI] [PubMed] [Google Scholar]
  41. Suckow J., Markiewicz P., Kleina L. G., Miller J., Kisters-Woike B., Müller-Hill B. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol. 1996 Aug 30;261(4):509–523. doi: 10.1006/jmbi.1996.0479. [DOI] [PubMed] [Google Scholar]
  42. Warshel A., Aqvist J., Creighton S. Enzymes work by solvation substitution rather than by desolvation. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5820–5824. doi: 10.1073/pnas.86.15.5820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weickert M. J., Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem. 1992 Aug 5;267(22):15869–15874. [PubMed] [Google Scholar]
  44. Yao N., Ledvina P. S., Choudhary A., Quiocho F. A. Modulation of a salt link does not affect binding of phosphate to its specific active transport receptor. Biochemistry. 1996 Feb 20;35(7):2079–2085. doi: 10.1021/bi952686r. [DOI] [PubMed] [Google Scholar]
  45. Zhang Y., Conway C., Rosato M., Suh Y., Manson M. D. Maltose chemotaxis involves residues in the N-terminal and C-terminal domains on the same face of maltose-binding protein. J Biol Chem. 1992 Nov 15;267(32):22813–22820. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES