Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Dec;7(12):2550–2559. doi: 10.1002/pro.5560071208

Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface: equilibrium, kinetic, and crystallographic studies.

P S Ledvina 1, A L Tsai 1, Z Wang 1, E Koehl 1, F A Quiocho 1
PMCID: PMC2143890  PMID: 9865949

Abstract

Stringent specificity and complementarity between the receptor, a periplasmic phosphate-binding protein (PBP) with a two-domain structure, and the completely buried and dehydrated phosphate are achieved by hydrogen bonding or dipolar interactions. We recently found that the surface charge potential of the cleft between the two domains that contains the anion binding site is intensely electronegative. This novel finding prompted the study reported here of the effect of ionic strength on the equilibrium and rapid kinetics of phosphate binding. To facilitate this study, Ala197, located on the edge of the cleft, was replaced by a Trp residue (A197W PBP) to generate a fluorescence reporter group. The A197W PBP-phosphate complex retains wild-type Kd and X-ray structure beyond the replacement residue. The Kd (0.18 microM) at no salt is increased by 20-fold at greater than 0.30 M NaCl. Stopped-flow fluorescence kinetic studies indicate a two-step binding process: (1) The phosphate (L) binds, at near diffusion-controlled rate, to the open cleft form (Po) of PBP to produce an intermediate, PoL. This rate decreases with increasing ionic strength. (2) The intermediate isomerizes to the closed-conformation form, PcL. The results indicate that the high specificity, affinity, and rate of phosphate binding are not influenced by the noncomplementary electronegative surface potential of the cleft. That binding depends almost entirely on local dipolar interactions with the receptor has important ramification in electrostatic interactions in protein structures and in ligand recognition.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqvist J., Luecke H., Quiocho F. A., Warshel A. Dipoles localized at helix termini of proteins stabilize charges. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):2026–2030. doi: 10.1073/pnas.88.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Careaga C. L., Sutherland J., Sabeti J., Falke J. J. Large amplitude twisting motions of an interdomain hinge: a disulfide trapping study of the galactose-glucose binding protein. Biochemistry. 1995 Mar 7;34(9):3048–3055. doi: 10.1021/bi00009a036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cleland W. W., Kreevoy M. M. Low-barrier hydrogen bonds and enzymic catalysis. Science. 1994 Jun 24;264(5167):1887–1890. doi: 10.1126/science.8009219. [DOI] [PubMed] [Google Scholar]
  4. He J. J., Quiocho F. A. Dominant role of local dipoles in stabilizing uncompensated charges on a sulfate sequestered in a periplasmic active transport protein. Protein Sci. 1993 Oct;2(10):1643–1647. doi: 10.1002/pro.5560021010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jacobson B. L., He J. J., Lemon D. D., Quiocho F. A. Interdomain salt bridges modulate ligand-induced domain motion of the sulfate receptor protein for active transport. J Mol Biol. 1992 Jan 5;223(1):27–30. doi: 10.1016/0022-2836(92)90712-s. [DOI] [PubMed] [Google Scholar]
  6. Kang C. H., Shin W. C., Yamagata Y., Gokcen S., Ames G. F., Kim S. H. Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution. J Biol Chem. 1991 Dec 15;266(35):23893–23899. [PubMed] [Google Scholar]
  7. Kubena B. D., Luecke H., Rosenberg H., Quiocho F. A. Crystallization and x-ray diffraction studies of a phosphate-binding protein involved in active transport in Escherichia coli. J Biol Chem. 1986 Jun 15;261(17):7995–7996. [PubMed] [Google Scholar]
  8. Ledvina P. S., Yao N., Choudhary A., Quiocho F. A. Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6786–6791. doi: 10.1073/pnas.93.13.6786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luecke H., Quiocho F. A. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature. 1990 Sep 27;347(6291):402–406. doi: 10.1038/347402a0. [DOI] [PubMed] [Google Scholar]
  10. Miller D. M., 3rd, Olson J. S., Quiocho F. A. The mechanism of sugar binding to the periplasmic receptor for galactose chemotaxis and transport in Escherichia coli. J Biol Chem. 1980 Mar 25;255(6):2465–2471. [PubMed] [Google Scholar]
  11. Nickitenko A. V., Trakhanov S., Quiocho F. A. 2 A resolution structure of DppA, a periplasmic dipeptide transport/chemosensory receptor. Biochemistry. 1995 Dec 26;34(51):16585–16595. doi: 10.1021/bi00051a006. [DOI] [PubMed] [Google Scholar]
  12. Nolte H. J., Rosenberry T. L., Neumann E. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry. 1980 Aug 5;19(16):3705–3711. doi: 10.1021/bi00557a011. [DOI] [PubMed] [Google Scholar]
  13. Pardee A. B. Purification and properties of a sulfate-binding protein from Salmonella typhimurium. J Biol Chem. 1966 Dec 25;241(24):5886–5892. [PubMed] [Google Scholar]
  14. Pflugrath J. W., Quiocho F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature. 1985 Mar 21;314(6008):257–260. doi: 10.1038/314257a0. [DOI] [PubMed] [Google Scholar]
  15. Quiocho F. A., Gilliland G. L., Phillips G. N., Jr The 2.8-A resolution structure of the L-arabinose-binding protein from Escherichia coli. Polypeptide chain folding, domain similarity, and probable location of sugar-binding site. J Biol Chem. 1977 Jul 25;252(14):5142–5149. [PubMed] [Google Scholar]
  16. Quiocho F. A., Ledvina P. S. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol. 1996 Apr;20(1):17–25. doi: 10.1111/j.1365-2958.1996.tb02484.x. [DOI] [PubMed] [Google Scholar]
  17. Walmsley A. R., Shaw J. G., Kelly D. J. The mechanism of ligand binding to the periplasmic C4-dicarboxylate binding protein (DctP) from Rhodobacter capsulatus. J Biol Chem. 1992 Apr 25;267(12):8064–8072. [PubMed] [Google Scholar]
  18. Wang Z., Choudhary A., Ledvina P. S., Quiocho F. A. Fine tuning the specificity of the periplasmic phosphate transport receptor. Site-directed mutagenesis, ligand binding, and crystallographic studies. J Biol Chem. 1994 Oct 7;269(40):25091–25094. doi: 10.2210/pdb1pbp/pdb. [DOI] [PubMed] [Google Scholar]
  19. Wang Z., Luecke H., Yao N., Quiocho F. A. A low energy short hydrogen bond in very high resolution structures of protein receptor--phosphate complexes. Nat Struct Biol. 1997 Jul;4(7):519–522. doi: 10.1038/nsb0797-519. [DOI] [PubMed] [Google Scholar]
  20. Yao N., Ledvina P. S., Choudhary A., Quiocho F. A. Modulation of a salt link does not affect binding of phosphate to its specific active transport receptor. Biochemistry. 1996 Feb 20;35(7):2079–2085. doi: 10.1021/bi952686r. [DOI] [PubMed] [Google Scholar]
  21. Yao N., Trakhanov S., Quiocho F. A. Refined 1.89-A structure of the histidine-binding protein complexed with histidine and its relationship with many other active transport/chemosensory proteins. Biochemistry. 1994 Apr 26;33(16):4769–4779. doi: 10.1021/bi00182a004. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES