Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Dec;7(12):2567–2577. doi: 10.1002/pro.5560071210

Interaction of wheat alpha-thionin with large unilamellar vesicles.

J M Caaveiro 1, A Molina 1, P Rodríguez-Palenzuela 1, F M Goñi 1, J M González-Mañas 1
PMCID: PMC2143897  PMID: 9865951

Abstract

The interaction of the wheat antibacterial peptide alpha-thionin with large unilamellar vesicles has been investigated by means of fluorescence spectroscopy. Binding of the peptide to the vesicles is followed by the release of vesicle contents, vesicle aggregation, and lipid mixing. Vesicle fusion, i.e., mixing of the aqueous contents, was not observed. Peptide binding is governed by electrostatic interactions and shows no cooperativity. The amphipatic nature of wheat alpha-thionin seems to destabilize the membrane bilayer and trigger the aggregation of the vesicles and lipid mixing. The presence of distearoylphosphatidylethanolamine-poly(ethylene glycol 2000) (PEG-PE) within the membrane provides a steric barrier that inhibits vesicle aggregation and lipid mixing but does not prevent leakage. Vesicle leakage through discrete membrane channels is unlikely, because the release of encapsulated large fluorescent dextrans is very similar to that of 8-aminonaphthalene-1,3,6,trisulfonic acid (ANTS). A minimum number of 700 peptide molecules must bind to each vesicle to produce complete leakage, which suggests a mechanism in which the overall destabilization of the membrane is due to the formation of transient pores rather than discrete channels.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basáez G., Goñi F. M., Alonso A. Poly(ethylene glycol)-lipid conjugates inhibit phospholipase C-induced lipid hydrolysis, liposome aggregation and fusion through independent mechanisms. FEBS Lett. 1997 Jul 14;411(2-3):281–286. doi: 10.1016/s0014-5793(97)00716-3. [DOI] [PubMed] [Google Scholar]
  2. Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim Biophys Acta. 1995 May 4;1235(2):452–460. doi: 10.1016/0005-2736(95)80035-e. [DOI] [PubMed] [Google Scholar]
  3. Biophysical Society 38th annual meeting. New Orleans, Louisiana, 6-10 March 1994. Abstracts. Biophys J. 1994 Feb;66(2 Pt 2):A1–442. [PMC free article] [PubMed] [Google Scholar]
  4. Blume G., Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990 Nov 2;1029(1):91–97. doi: 10.1016/0005-2736(90)90440-y. [DOI] [PubMed] [Google Scholar]
  5. Bohlmann H., Clausen S., Behnke S., Giese H., Hiller C., Reimann-Philipp U., Schrader G., Barkholt V., Apel K. Leaf-specific thionins of barley-a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. EMBO J. 1988 Jun;7(6):1559–1565. doi: 10.1002/j.1460-2075.1988.tb02980.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broekaert W. F., Terras F. R., Cammue B. P., Osborn R. W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995 Aug;108(4):1353–1358. doi: 10.1104/pp.108.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butko P., Huang F., Pusztai-Carey M., Surewicz W. K. Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membranes. Biochemistry. 1997 Oct 21;36(42):12862–12868. doi: 10.1021/bi9702389. [DOI] [PubMed] [Google Scholar]
  8. Butko P., Huang F., Pusztai-Carey M., Surewicz W. K. Membrane permeabilization induced by cytolytic delta-endotoxin CytA from Bacillus thuringiensis var. israelensis. Biochemistry. 1996 Sep 3;35(35):11355–11360. doi: 10.1021/bi960970s. [DOI] [PubMed] [Google Scholar]
  9. Caaveiro J. M., Molina A., González-Mañas J. M., Rodríguez-Palenzuela P., Garcia-Olmedo F., Goñi F. M. Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Lett. 1997 Jun 30;410(2-3):338–342. doi: 10.1016/s0014-5793(97)00613-3. [DOI] [PubMed] [Google Scholar]
  10. Carrasco L., Vázquez D., Hernández-Lucas C., Carbonero P., García-Olmedo F. Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem. 1981 May;116(1):185–189. doi: 10.1111/j.1432-1033.1981.tb05317.x. [DOI] [PubMed] [Google Scholar]
  11. Clore G. M., Sukumaran D. K., Gronenborn A. M., Teeter M. M., Whitlow M., Jones B. L. Nuclear magnetic resonance study of the solution structure of alpha 1-purothionin. Sequential resonance assignment, secondary structure and low resolution tertiary structure. J Mol Biol. 1987 Feb 5;193(3):571–578. doi: 10.1016/0022-2836(87)90267-1. [DOI] [PubMed] [Google Scholar]
  12. De Caleya R. F., Hernandez-Lucas C., Carbonero P., Garcia-Olmedo F. Gene expression in alloploids: genetic control of lipopurothionins in wheat. Genetics. 1976 Aug;83(4):687–699. doi: 10.1093/genetics/83.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ellens H., Bentz J., Szoka F. C. H+- and Ca2+-induced fusion and destabilization of liposomes. Biochemistry. 1985 Jun 18;24(13):3099–3106. doi: 10.1021/bi00334a005. [DOI] [PubMed] [Google Scholar]
  14. Fernandez de Caleya R., Gonzalez-Pascual B., García-Olmedo F., Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol. 1972 May;23(5):998–1000. doi: 10.1128/am.23.5.998-1000.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Florack D. E., Stiekema W. J. Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol. 1994 Oct;26(1):25–37. doi: 10.1007/BF00039517. [DOI] [PubMed] [Google Scholar]
  16. Gazit E., Boman A., Boman H. G., Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 1995 Sep 12;34(36):11479–11488. doi: 10.1021/bi00036a021. [DOI] [PubMed] [Google Scholar]
  17. Haegele B., Mersch-Sundermann V., Kretschmar M., Hof H. Antimikrobiell wirksame Oligopeptide--ein wichtiger Teil der unspezifischen Infektabwehr. Immun Infekt. 1995 Dec;23(6):205–208. [PubMed] [Google Scholar]
  18. Hernandez-Lucas C., Fernandez de Caleya R., Carbonero P. Inhibition of brewer's yeasts by wheat purothionins. Appl Microbiol. 1974 Aug;28(2):165–168. doi: 10.1128/am.28.2.165-168.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huang W., Vernon L. P., Hansen L. D., Bell J. D. Interactions of thionin from Pyrularia pubera with dipalmitoylphosphatidylglycerol large unilamellar vesicles. Biochemistry. 1997 Mar 11;36(10):2860–2866. doi: 10.1021/bi962405v. [DOI] [PubMed] [Google Scholar]
  20. Katsu T., Kuroko M., Morikawa T., Sanchika K., Fujita Y., Yamamura H., Uda M. Mechanism of membrane damage induced by the amphipathic peptides gramicidin S and melittin. Biochim Biophys Acta. 1989 Aug 7;983(2):135–141. doi: 10.1016/0005-2736(89)90226-5. [DOI] [PubMed] [Google Scholar]
  21. Kuhl T. L., Leckband D. E., Lasic D. D., Israelachvili J. N. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys J. 1994 May;66(5):1479–1488. doi: 10.1016/S0006-3495(94)80938-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Matsuzaki K., Harada M., Funakoshi S., Fujii N., Miyajima K. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta. 1991 Mar 18;1063(1):162–170. doi: 10.1016/0005-2736(91)90366-g. [DOI] [PubMed] [Google Scholar]
  23. Matsuzaki K., Harada M., Handa T., Funakoshi S., Fujii N., Yajima H., Miyajima K. Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. Biochim Biophys Acta. 1989 May 19;981(1):130–134. doi: 10.1016/0005-2736(89)90090-4. [DOI] [PubMed] [Google Scholar]
  24. Ostolaza H., Bartolomé B., Ortiz de Zárate I., de la Cruz F., Goñi F. M. Release of lipid vesicle contents by the bacterial protein toxin alpha-haemolysin. Biochim Biophys Acta. 1993 Apr 8;1147(1):81–88. doi: 10.1016/0005-2736(93)90318-t. [DOI] [PubMed] [Google Scholar]
  25. Papahadjopoulos D., Allen T. M., Gabizon A., Mayhew E., Matthay K., Huang S. K., Lee K. D., Woodle M. C., Lasic D. D., Redemann C. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11460–11464. doi: 10.1073/pnas.88.24.11460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pouny Y., Rapaport D., Mor A., Nicolas P., Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 1992 Dec 15;31(49):12416–12423. doi: 10.1021/bi00164a017. [DOI] [PubMed] [Google Scholar]
  27. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  28. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  29. Teeter M. M., Ma X. Q., Rao U., Whitlow M. Crystal structure of a protein-toxin alpha 1-purothionin at 2.5A and a comparison with predicted models. Proteins. 1990;8(2):118–132. doi: 10.1002/prot.340080203. [DOI] [PubMed] [Google Scholar]
  30. Thevissen K., Ghazi A., De Samblanx G. W., Brownlee C., Osborn R. W., Broekaert W. F. Fungal membrane responses induced by plant defensins and thionins. J Biol Chem. 1996 Jun 21;271(25):15018–15025. doi: 10.1074/jbc.271.25.15018. [DOI] [PubMed] [Google Scholar]
  31. Wada K., Ozaki Y., Matsubara H., Yoshizumi H. Studies on purothionin by chemical modifications. J Biochem. 1982 Jan;91(1):257–263. doi: 10.1093/oxfordjournals.jbchem.a133683. [DOI] [PubMed] [Google Scholar]
  32. Wall J., Golding C. A., Van Veen M., O'Shea P. The use of fluoresceinphosphatidylethanolamine (FPE) as a real-time probe for peptide-membrane interactions. Mol Membr Biol. 1995 Apr-Jun;12(2):183–192. doi: 10.3109/09687689509027506. [DOI] [PubMed] [Google Scholar]
  33. Woodle M. C., Lasic D. D. Sterically stabilized liposomes. Biochim Biophys Acta. 1992 Aug 14;1113(2):171–199. doi: 10.1016/0304-4157(92)90038-c. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES