Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Dec;7(12):2541–2549. doi: 10.1002/pro.5560071207

The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii.

G Sridhar Prasad 1, N Kresge 1, A B Muhlberg 1, A Shaw 1, Y S Jung 1, B K Burgess 1, C D Stout 1
PMCID: PMC2143901  PMID: 9865948

Abstract

NADPH:ferredoxin reductase (AvFPR) is involved in the response to oxidative stress in Azotobacter vinelandii. The crystal structure of AvFPR has been determined at 2.0 A resolution. The polypeptide fold is homologous with six other oxidoreductases whose structures have been solved including Escherichia coli flavodoxin reductase (EcFldR) and spinach, and Anabaena ferredoxin:NADP+ reductases (FNR). AvFPR is overall most homologous to EcFldR. The structure is comprised of a N-terminal six-stranded antiparallel beta-barrel domain, which binds FAD, and a C-terminal five-stranded parallel beta-sheet domain, which binds NADPH/NADP+ and has a classical nucleotide binding fold. The two domains associate to form a deep cleft where the NADPH and FAD binding sites are juxtaposed. The structure displays sequence conserved motifs in the region surrounding the two dinucleotide binding sites, which are characteristic of the homologous enzymes. The folded over conformation of FAD in AvFPR is similar to that in EcFldR due to stacking of Phe255 on the adenine ring of FAD, but it differs from that in the FNR enzymes, which lack a homologous aromatic residue. The structure of AvFPR displays three unique features in the environment of the bound FAD. Two features may affect the rate of reduction of FAD: the absence of an aromatic residue stacked on the isoalloxazine ring in the NADPH binding site; and the interaction of a carbonyl group with N10 of the flavin. Both of these features are due to the substitution of a conserved C-terminal tyrosine residue with alanine (Ala254) in AvFPR. An additional unique feature may affect the interaction of AvFPR with its redox partner ferredoxin I (FdI). This is the extension of the C-terminus by three residues relative to EcFldR and by four residues relative to FNR. The C-terminal residue, Lys258, interacts with the AMP phosphate of FAD. Consequently, both phosphate groups are paired with a basic group due to the simultaneous interaction of the FMN phosphate with Arg51 in a conserved FAD binding motif. The fourth feature, common to homologous oxidoreductases, is a concentration of 10 basic residues on the face of the protein surrounding the active site, in addition to Arg51 and Lys258.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bianchi V., Reichard P., Eliasson R., Pontis E., Krook M., Jörnvall H., Haggård-Ljungquist E. Escherichia coli ferredoxin NADP+ reductase: activation of E. coli anaerobic ribonucleotide reduction, cloning of the gene (fpr), and overexpression of the protein. J Bacteriol. 1993 Mar;175(6):1590–1595. doi: 10.1128/jb.175.6.1590-1595.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruns C. M., Karplus P. A. Refined crystal structure of spinach ferredoxin reductase at 1.7 A resolution: oxidized, reduced and 2'-phospho-5'-AMP bound states. J Mol Biol. 1995 Mar 17;247(1):125–145. doi: 10.1006/jmbi.1994.0127. [DOI] [PubMed] [Google Scholar]
  3. Correll C. C., Batie C. J., Ballou D. P., Ludwig M. L. Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science. 1992 Dec 4;258(5088):1604–1610. doi: 10.1126/science.1280857. [DOI] [PubMed] [Google Scholar]
  4. Correll C. C., Ludwig M. L., Bruns C. M., Karplus P. A. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin. Protein Sci. 1993 Dec;2(12):2112–2133. doi: 10.1002/pro.5560021212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diller T. C., Shaw A., Isas J. M., Burgess B. K., Stout C. D. Diffraction quality crystals of protein X from Azotobacter vinelandii. J Mol Biol. 1994 Aug 26;241(4):620–621. doi: 10.1006/jmbi.1994.1535. [DOI] [PubMed] [Google Scholar]
  6. Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
  7. Hurley J. K., Weber-Main A. M., Stankovich M. T., Benning M. M., Thoden J. B., Vanhooke J. L., Holden H. M., Chae Y. K., Xia B., Cheng H. Structure-function relationships in Anabaena ferredoxin: correlations between X-ray crystal structures, reduction potentials, and rate constants of electron transfer to ferredoxin:NADP+ reductase for site-specific ferredoxin mutants. Biochemistry. 1997 Sep 16;36(37):11100–11117. doi: 10.1021/bi9709001. [DOI] [PubMed] [Google Scholar]
  8. Iismaa S. E., Vázquez A. E., Jensen G. M., Stephens P. J., Butt J. N., Armstrong F. A., Burgess B. K. Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I. Changes in [4Fe-4S] cluster reduction potential and reactivity. J Biol Chem. 1991 Nov 15;266(32):21563–21571. [PubMed] [Google Scholar]
  9. Ingelman M., Bianchi V., Eklund H. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution. J Mol Biol. 1997 Apr 25;268(1):147–157. doi: 10.1006/jmbi.1997.0957. [DOI] [PubMed] [Google Scholar]
  10. Isas J. M., Burgess B. K. Purification and characterization of a NADP+/NADPH-specific flavoprotein that is overexpressed in FdI- strains of Azotobacter vinelandii. J Biol Chem. 1994 Jul 29;269(30):19404–19409. [PubMed] [Google Scholar]
  11. Isas J. M., Yannone S. M., Burgess B. K. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression. J Biol Chem. 1995 Sep 8;270(36):21258–21263. doi: 10.1074/jbc.270.36.21258. [DOI] [PubMed] [Google Scholar]
  12. Karplus P. A., Daniels M. J., Herriott J. R. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science. 1991 Jan 4;251(4989):60–66. [PubMed] [Google Scholar]
  13. Liochev S. I., Hausladen A., Beyer W. F., Jr, Fridovich I. NADPH: ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1328–1331. doi: 10.1073/pnas.91.4.1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lu G., Campbell W. H., Schneider G., Lindqvist Y. Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases. Structure. 1994 Sep 15;2(9):809–821. doi: 10.1016/s0969-2126(94)00082-4. [DOI] [PubMed] [Google Scholar]
  15. Merritt E. A., Murphy M. E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869–873. doi: 10.1107/S0907444994006396. [DOI] [PubMed] [Google Scholar]
  16. Morgan T. V., Lundell D. J., Burgess B. K. Azotobacter vinelandii ferredoxin I: cloning, sequencing, and mutant analysis. J Biol Chem. 1988 Jan 25;263(3):1370–1375. [PubMed] [Google Scholar]
  17. Murzin A. G. Probable circular permutation in the flavin-binding domain. Nat Struct Biol. 1998 Feb;5(2):101–101. doi: 10.1038/nsb0298-101. [DOI] [PubMed] [Google Scholar]
  18. Nishida H., Inaka K., Yamanaka M., Kaida S., Kobayashi K., Miki K. Crystal structure of NADH-cytochrome b5 reductase from pig liver at 2.4 A resolution. Biochemistry. 1995 Mar 7;34(9):2763–2767. doi: 10.1021/bi00009a004. [DOI] [PubMed] [Google Scholar]
  19. Nishida H., Miki K. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: pyridine nucleotide-binding and interaction with an electron-transfer partner. Proteins. 1996 Sep;26(1):32–41. doi: 10.1002/(SICI)1097-0134(199609)26:1<32::AID-PROT3>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  20. Serre L., Vellieux F. M., Medina M., Gomez-Moreno C., Fontecilla-Camps J. C., Frey M. X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution. J Mol Biol. 1996 Oct 18;263(1):20–39. doi: 10.1006/jmbi.1996.0553. [DOI] [PubMed] [Google Scholar]
  21. Stout C. D. Refinement of the 7 Fe ferredoxin from Azotobacter vinelandii at 1.9 A resolution. J Mol Biol. 1989 Feb 5;205(3):545–555. doi: 10.1016/0022-2836(89)90225-8. [DOI] [PubMed] [Google Scholar]
  22. Wang M., Roberts D. L., Paschke R., Shea T. M., Masters B. S., Kim J. J. Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8411–8416. doi: 10.1073/pnas.94.16.8411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yannone S. M., Burgess B. K. Identification of a palindromic sequence that is responsible for the up-regulation of NAPDH-ferredoxin reductase in a ferredoxin I deletion strain of Azotobacter vinelandii. J Biol Chem. 1997 May 30;272(22):14454–14458. doi: 10.1074/jbc.272.22.14454. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES