Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Feb;7(2):470–479. doi: 10.1002/pro.5560070228

Stability and folding properties of a model beta-sheet protein, Escherichia coli CspA.

K L Reid 1, H M Rodriguez 1, B J Hillier 1, L M Gregoret 1
PMCID: PMC2143919  PMID: 9521124

Abstract

Although beta-sheets represent a sizable fraction of the secondary structure found in proteins, the forces guiding the formation of beta-sheets are still not well understood. Here we examine the folding of a small, all beta-sheet protein, the E. coli major cold shock protein CspA, using both equilibrium and kinetic methods. The equilibrium denaturation of CspA is reversible and displays a single transition between folded and unfolded states. The kinetic traces of the unfolding and refolding of CspA studied by stopped-flow fluorescence spectroscopy are monoexponential and thus also consistent with a two-state model. In the absence of denaturant, CspA refolds very fast with a time constant of 5 ms. The unfolding of CspA is also rapid, and at urea concentrations above the denaturation midpoint, the rate of unfolding is largely independent of urea concentration. This suggests that the transition state ensemble more closely resembles the native state in terms of solvent accessibility than the denatured state. Based on the model of a compact transition state and on an unusual structural feature of CspA, a solvent-exposed cluster of aromatic side chains, we propose a novel folding mechanism for CspA. We have also investigated the possible complications that may arise from attaching polyhistidine affinity tags to the carboxy and amino termini of CspA.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander P., Orban J., Bryan P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry. 1992 Aug 18;31(32):7243–7248. doi: 10.1021/bi00147a006. [DOI] [PubMed] [Google Scholar]
  2. Blanco F. J., Rivas G., Serrano L. A short linear peptide that folds into a native stable beta-hairpin in aqueous solution. Nat Struct Biol. 1994 Sep;1(9):584–590. doi: 10.1038/nsb0994-584. [DOI] [PubMed] [Google Scholar]
  3. Burton R. E., Huang G. S., Daugherty M. A., Fullbright P. W., Oas T. G. Microsecond protein folding through a compact transition state. J Mol Biol. 1996 Oct 25;263(2):311–322. doi: 10.1006/jmbi.1996.0577. [DOI] [PubMed] [Google Scholar]
  4. Chatterjee S., Jiang W., Emerson S. D., Inouye M. The backbone structure of the major cold-shock protein CS7.4 of Escherichia coli in solution includes extensive beta-sheet structure. J Biochem. 1993 Nov;114(5):663–669. doi: 10.1093/oxfordjournals.jbchem.a124234. [DOI] [PubMed] [Google Scholar]
  5. Chen B. L., Baase W. A., Nicholson H., Schellman J. A. Folding kinetics of T4 lysozyme and nine mutants at 12 degrees C. Biochemistry. 1992 Feb 11;31(5):1464–1476. doi: 10.1021/bi00120a025. [DOI] [PubMed] [Google Scholar]
  6. Chen B. L., Baase W. A., Schellman J. A. Low-temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry. 1989 Jan 24;28(2):691–699. doi: 10.1021/bi00428a042. [DOI] [PubMed] [Google Scholar]
  7. Clark P. L., Liu Z. P., Zhang J., Gierasch L. M. Intrinsic tryptophans of CRABPI as probes of structure and folding. Protein Sci. 1996 Jun;5(6):1108–1117. doi: 10.1002/pro.5560050613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davidson A. R., Sauer R. T. Folded proteins occur frequently in libraries of random amino acid sequences. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2146–2150. doi: 10.1073/pnas.91.6.2146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dufton M. J., Hider R. C. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit Rev Biochem. 1983;14(2):113–171. doi: 10.3109/10409238309102792. [DOI] [PubMed] [Google Scholar]
  10. Goldstein J., Pollitt N. S., Inouye M. Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1990 Jan;87(1):283–287. doi: 10.1073/pnas.87.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green N. M., Melamed M. D. Optical rotatory dispersion, circular dichroism and far-ultraviolet spectra of avidin and streptavidin. Biochem J. 1966 Sep;100(3):614–621. doi: 10.1042/bj1000614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamada D., Segawa S., Goto Y. Non-native alpha-helical intermediate in the refolding of beta-lactoglobulin, a predominantly beta-sheet protein. Nat Struct Biol. 1996 Oct;3(10):868–873. doi: 10.1038/nsb1096-868. [DOI] [PubMed] [Google Scholar]
  13. Hooke S. D., Radford S. E., Dobson C. M. The refolding of human lysozyme: a comparison with the structurally homologous hen lysozyme. Biochemistry. 1994 May 17;33(19):5867–5876. doi: 10.1021/bi00185a026. [DOI] [PubMed] [Google Scholar]
  14. Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry. 1991 Oct 29;30(43):10428–10435. doi: 10.1021/bi00107a010. [DOI] [PubMed] [Google Scholar]
  15. Jiang W., Hou Y., Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem. 1997 Jan 3;272(1):196–202. doi: 10.1074/jbc.272.1.196. [DOI] [PubMed] [Google Scholar]
  16. Khorasanizadeh S., Peters I. D., Roder H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Biol. 1996 Feb;3(2):193–205. doi: 10.1038/nsb0296-193. [DOI] [PubMed] [Google Scholar]
  17. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  18. Kragelund B. B., Højrup P., Jensen M. S., Schjerling C. K., Juul E., Knudsen J., Poulsen F. M. Fast and one-step folding of closely and distantly related homologous proteins of a four-helix bundle family. J Mol Biol. 1996 Feb 16;256(1):187–200. doi: 10.1006/jmbi.1996.0076. [DOI] [PubMed] [Google Scholar]
  19. Lijnzaad P., Berendsen H. J., Argos P. Hydrophobic patches on the surfaces of protein structures. Proteins. 1996 Jul;25(3):389–397. doi: 10.1002/(SICI)1097-0134(199607)25:3<389::AID-PROT10>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  20. Makhatadze G. I., Marahiel M. A. Effect of pH and phosphate ions on self-association properties of the major cold-shock protein from Bacillus subtilis. Protein Sci. 1994 Nov;3(11):2144–2147. doi: 10.1002/pro.5560031127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matouschek A., Otzen D. E., Itzhaki L. S., Jackson S. E., Fersht A. R. Movement of the position of the transition state in protein folding. Biochemistry. 1995 Oct 17;34(41):13656–13662. doi: 10.1021/bi00041a047. [DOI] [PubMed] [Google Scholar]
  22. Matthews C. R., Hurle M. R. Mutant sequences as probes of protein folding mechanisms. Bioessays. 1987 Jun;6(6):254–257. doi: 10.1002/bies.950060603. [DOI] [PubMed] [Google Scholar]
  23. Milla M. E., Brown B. M., Sauer R. T. P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences. Protein Sci. 1993 Dec;2(12):2198–2205. doi: 10.1002/pro.5560021219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Milla M. E., Brown B. M., Waldburger C. D., Sauer R. T. P22 Arc repressor: transition state properties inferred from mutational effects on the rates of protein unfolding and refolding. Biochemistry. 1995 Oct 24;34(42):13914–13919. doi: 10.1021/bi00042a024. [DOI] [PubMed] [Google Scholar]
  25. Nesloney C. L., Kelly J. W. Progress towards understanding beta-sheet structure. Bioorg Med Chem. 1996 Jun;4(6):739–766. doi: 10.1016/0968-0896(96)00051-x. [DOI] [PubMed] [Google Scholar]
  26. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  27. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ramírez-Alvarado M., Blanco F. J., Serrano L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat Struct Biol. 1996 Jul;3(7):604–612. doi: 10.1038/nsb0796-604. [DOI] [PubMed] [Google Scholar]
  29. Ropson I. J., Frieden C. Dynamic NMR spectral analysis and protein folding: identification of a highly populated folding intermediate of rat intestinal fatty acid-binding protein by 19F NMR. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7222–7226. doi: 10.1073/pnas.89.15.7222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ropson I. J., Gordon J. I., Frieden C. Folding of a predominantly beta-structure protein: rat intestinal fatty acid binding protein. Biochemistry. 1990 Oct 16;29(41):9591–9599. doi: 10.1021/bi00493a013. [DOI] [PubMed] [Google Scholar]
  31. Rudolph R., Siebendritt R., Nesslaŭer G., Sharma A. K., Jaenicke R. Folding of an all-beta protein: independent domain folding in gamma II-crystallin from calf eye lens. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4625–4629. doi: 10.1073/pnas.87.12.4625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schindelin H., Jiang W., Inouye M., Heinemann U. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5119–5123. doi: 10.1073/pnas.91.11.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schindelin H., Marahiel M. A., Heinemann U. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature. 1993 Jul 8;364(6433):164–168. doi: 10.1038/364164a0. [DOI] [PubMed] [Google Scholar]
  35. Schindler T., Herrler M., Marahiel M. A., Schmid F. X. Extremely rapid protein folding in the absence of intermediates. Nat Struct Biol. 1995 Aug;2(8):663–673. doi: 10.1038/nsb0895-663. [DOI] [PubMed] [Google Scholar]
  36. Schindler T., Schmid F. X. Thermodynamic properties of an extremely rapid protein folding reaction. Biochemistry. 1996 Dec 24;35(51):16833–16842. doi: 10.1021/bi962090j. [DOI] [PubMed] [Google Scholar]
  37. Searle M. S., Williams D. H., Packman L. C. A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native beta-hairpin. Nat Struct Biol. 1995 Nov;2(11):999–1006. doi: 10.1038/nsb1195-999. [DOI] [PubMed] [Google Scholar]
  38. Tanford C. Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95. [PubMed] [Google Scholar]
  39. Tisi L. C., Evans P. A. Conserved structural features on protein surfaces: small exterior hydrophobic clusters. J Mol Biol. 1995 Jun 2;249(2):251–258. doi: 10.1006/jmbi.1995.0294. [DOI] [PubMed] [Google Scholar]
  40. Varley P., Gronenborn A. M., Christensen H., Wingfield P. T., Pain R. H., Clore G. M. Kinetics of folding of the all-beta sheet protein interleukin-1 beta. Science. 1993 May 21;260(5111):1110–1113. doi: 10.1126/science.8493553. [DOI] [PubMed] [Google Scholar]
  41. Viguera A. R., Blanco F. J., Serrano L. The order of secondary structure elements does not determine the structure of a protein but does affect its folding kinetics. J Mol Biol. 1995 Apr 7;247(4):670–681. doi: 10.1006/jmbi.1994.0171. [DOI] [PubMed] [Google Scholar]
  42. Viguera A. R., Martínez J. C., Filimonov V. V., Mateo P. L., Serrano L. Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry. 1994 Mar 1;33(8):2142–2150. doi: 10.1021/bi00174a022. [DOI] [PubMed] [Google Scholar]
  43. Woody R. W. Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Eur Biophys J. 1994;23(4):253–262. doi: 10.1007/BF00213575. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES