Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Feb;7(2):349–357. doi: 10.1002/pro.5560070215

Reactivities of the S2 and S3 subsite residues of thrombin with the native and heparin-induced conformers of antithrombin.

A R Rezaie 1
PMCID: PMC2143920  PMID: 9521111

Abstract

A pentasaccharide (PS) fragment of heparin capable of activating antithrombin (AT) markedly accelerates the inhibition of factor Xa by AT, but has insignificant effect on inhibition of thrombin. For inhibition of thrombin, the bridging function of a longer polysaccharide chain is required to accelerate the reaction. To study the basis for the similar reactivity of thrombin with the native or heparin-activated conformers of AT, several residues surrounding the active site pocket of thrombin were targeted for mutagenesis study. Leu99 and Glu192, the variant residues influencing the S2 and S3 subsite specificity of thrombin were replaced with Tyr and Gln. The Tyr60a, Pro60b, Pro60c, and Trp60d residues forming part of the S2 specificity pocket were deleted from the B-insertion loop of the wild-type and Leu99/Glu192 --> Tyr/Gln thrombins. Kinetic studies indicated that the reactivities of all mutants with AT were moderately or severely impaired. Although heparin largely corrected the defect in reactivities, it also markedly elevated the stoichiometries of inhibition with the mutants. Interestingly, PS also accelerated AT inhibition of the mutants 5-68-fold, suggesting that the mutants are able to discriminate between the native and activated conformers of AT. Based on these results and the recent crystal structure determination of AT in complex with PS, a model for thrombin-AT interaction is proposed in which the S2 and S3 subsite residues of thrombin are critical for recognition of the P2 and P3 residues of AT in the native conformation. In the activated conformation, other residues are made accessible for interaction with the protease, and the similar reactivity of thrombin with the native and heparin-activated conformers of AT may be coincidental. The results further suggest that the S2 and S3 subsite residues are crucial in controlling the partitioning of the thrombin-AT intermediate into the alternative inhibitory or substrate pathways of the reaction.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choay J., Petitou M., Lormeau J. C., Sinaÿ P., Casu B., Gatti G. Structure-activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun. 1983 Oct 31;116(2):492–499. doi: 10.1016/0006-291x(83)90550-8. [DOI] [PubMed] [Google Scholar]
  3. Danielsson A., Raub E., Lindahl U., Björk I. Role of ternary complexes, in which heparin binds both antithrombin and proteinase, in the acceleration of the reactions between antithrombin and thrombin or factor Xa. J Biol Chem. 1986 Nov 25;261(33):15467–15473. [PubMed] [Google Scholar]
  4. Fish W. W., Björk I. Release of a two-chain form of antithrombin from the antithrombin-thrombin complex. Eur J Biochem. 1979 Nov 1;101(1):31–38. doi: 10.1111/j.1432-1033.1979.tb04212.x. [DOI] [PubMed] [Google Scholar]
  5. Guinto E. R., Ye J., Le Bonniec B. F., Esmon C. T. Glu192-->Gln substitution in thrombin yields an enzyme that is effectively inhibited by bovine pancreatic trypsin inhibitor and tissue factor pathway inhibitor. J Biol Chem. 1994 Jul 15;269(28):18395–18400. [PubMed] [Google Scholar]
  6. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huntington J. A., Olson S. T., Fan B., Gettins P. G. Mechanism of heparin activation of antithrombin. Evidence for reactive center loop preinsertion with expulsion upon heparin binding. Biochemistry. 1996 Jul 2;35(26):8495–8503. doi: 10.1021/bi9604643. [DOI] [PubMed] [Google Scholar]
  8. Lane D. A., Denton J., Flynn A. M., Thunberg L., Lindahl U. Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J. 1984 Mar 15;218(3):725–732. doi: 10.1042/bj2180725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Le Bonniec B. F., Esmon C. T. Glu-192----Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7371–7375. doi: 10.1073/pnas.88.16.7371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Le Bonniec B. F., Guinto E. R., MacGillivray R. T., Stone S. R., Esmon C. T. The role of thrombin's Tyr-Pro-Pro-Trp motif in the interaction with fibrinogen, thrombomodulin, protein C, antithrombin III, and the Kunitz inhibitors. J Biol Chem. 1993 Sep 5;268(25):19055–19061. [PubMed] [Google Scholar]
  11. Le Bonniec B. F., Guinto E. R., Stone S. R. Identification of thrombin residues that modulate its interactions with antithrombin III and alpha 1-antitrypsin. Biochemistry. 1995 Sep 26;34(38):12241–12248. doi: 10.1021/bi00038a019. [DOI] [PubMed] [Google Scholar]
  12. Mann K. G., Williams E. B., Krishnaswamy S., Church W., Giles A., Tracy R. P. Active site-specific immunoassays. Blood. 1990 Aug 15;76(4):755–766. [PubMed] [Google Scholar]
  13. Neuenschwander P. F., Morrissey J. H. Alteration of the substrate and inhibitor specificities of blood coagulation factor VIIa: importance of amino acid residue K192. Biochemistry. 1995 Jul 11;34(27):8701–8707. doi: 10.1021/bi00027a020. [DOI] [PubMed] [Google Scholar]
  14. Olson S. T., Björk I., Sheffer R., Craig P. A., Shore J. D., Choay J. Role of the antithrombin-binding pentasaccharide in heparin acceleration of antithrombin-proteinase reactions. Resolution of the antithrombin conformational change contribution to heparin rate enhancement. J Biol Chem. 1992 Jun 25;267(18):12528–12538. [PubMed] [Google Scholar]
  15. Olson S. T. Heparin and ionic strength-dependent conversion of antithrombin III from an inhibitor to a substrate of alpha-thrombin. J Biol Chem. 1985 Aug 25;260(18):10153–10160. [PubMed] [Google Scholar]
  16. Olson S. T., Shore J. D. Demonstration of a two-step reaction mechanism for inhibition of alpha-thrombin by antithrombin III and identification of the step affected by heparin. J Biol Chem. 1982 Dec 25;257(24):14891–14895. [PubMed] [Google Scholar]
  17. Olson S. T., Stephens A. W., Hirs C. H., Bock P. E., Björk I. Kinetic characterization of the proteinase binding defect in a reactive site variant of the serpin, antithrombin. Role of the P1' residue in transition-state stabilization of antithrombin-proteinase complex formation. J Biol Chem. 1995 Apr 28;270(17):9717–9724. doi: 10.1074/jbc.270.17.9717. [DOI] [PubMed] [Google Scholar]
  18. Padmanabhan K., Padmanabhan K. P., Tulinsky A., Park C. H., Bode W., Huber R., Blankenship D. T., Cardin A. D., Kisiel W. Structure of human des(1-45) factor Xa at 2.2 A resolution. J Mol Biol. 1993 Aug 5;232(3):947–966. doi: 10.1006/jmbi.1993.1441. [DOI] [PubMed] [Google Scholar]
  19. Potempa J., Korzus E., Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem. 1994 Jun 10;269(23):15957–15960. [PubMed] [Google Scholar]
  20. Rezaie A. R., Esmon C. T. Contribution of residue 192 in factor Xa to enzyme specificity and function. J Biol Chem. 1995 Jul 7;270(27):16176–16181. doi: 10.1074/jbc.270.27.16176. [DOI] [PubMed] [Google Scholar]
  21. Rezaie A. R., Esmon C. T. Conversion of glutamic acid 192 to glutamine in activated protein C changes the substrate specificity and increases reactivity toward macromolecular inhibitors. J Biol Chem. 1993 Sep 25;268(27):19943–19948. [PubMed] [Google Scholar]
  22. Rezaie A. R., Fiore M. M., Neuenschwander P. F., Esmon C. T., Morrissey J. H. Expression and purification of a soluble tissue factor fusion protein with an epitope for an unusual calcium-dependent antibody. Protein Expr Purif. 1992 Dec;3(6):453–460. doi: 10.1016/1046-5928(92)90062-2. [DOI] [PubMed] [Google Scholar]
  23. Rezaie A. R. Role of residue 99 at the S2 subsite of factor Xa and activated protein C in enzyme specificity. J Biol Chem. 1996 Sep 27;271(39):23807–23814. doi: 10.1074/jbc.271.39.23807. [DOI] [PubMed] [Google Scholar]
  24. Rezaie A. R. Tryptophan 60-D in the B-insertion loop of thrombin modulates the thrombin-antithrombin reaction. Biochemistry. 1996 Feb 13;35(6):1918–1924. doi: 10.1021/bi952065y. [DOI] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  27. Stubbs M. T., Bode W. A player of many parts: the spotlight falls on thrombin's structure. Thromb Res. 1993 Jan 1;69(1):1–58. doi: 10.1016/0049-3848(93)90002-6. [DOI] [PubMed] [Google Scholar]
  28. Ye J., Rezaie A. R., Esmon C. T. Glycosaminoglycan contributions to both protein C activation and thrombin inhibition involve a common arginine-rich site in thrombin that includes residues arginine 93, 97, and 101. J Biol Chem. 1994 Jul 8;269(27):17965–17970. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES