Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Feb;7(2):427–432. doi: 10.1002/pro.5560070224

Formation and movement of Fe(III) in horse spleen, H- and L-recombinant ferritins. A fluorescence study.

S Cavallo 1, G Mei 1, S Stefanini 1, N Rosato 1, A Finazzi-Agrò 1, E Chiancone 1
PMCID: PMC2143922  PMID: 9521120

Abstract

Iron oxidation and incorporation into apoferritins of different subunit composition, namely the recombinant H and L homopolymers and the natural horse spleen heteropolymer (10-15% H), have been followed by steady-state and time-resolved fluorescence. After aerobic addition of 100 Fe(II) atoms/polymer, markedly different kinetic profiles are observed. In the rL-homopolymer a slow monotonic fluorescence quenching is observed which reflects binding, slow oxidation at the threefold apoferritin channels, and diffusion into the protein cavity. In the rH-homopolymer a fast fluorescence quenching is followed by a partial, slow recovery. The two processes have been attributed to Fe(II) binding and oxidation at the ferroxidase centers and to Fe(III) released into the cavity, respectively. The fluorescence kinetics of horse spleen apoferritin is dominated by the H chain contribution and resembles that of the H homopolymer. It brings out clearly that the rate of the overall process is limited by the rate at which Fe(III) leaves the ferroxidase centers of the H chains where binding of incoming Fe(II) and its oxidation take place. The data obtained upon stepwise addition of iron and the results of optical absorption measurements confirm this picture. The correspondence between steady-state and time-resolved data is remarkably good; this is manifest when the latter are used to calculate the change in fluorescence intensity as apparent in the steady-state measurements.

Full Text

The Full Text of this article is available as a PDF (661.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews S. C., Arosio P., Bottke W., Briat J. F., von Darl M., Harrison P. M., Laulhère J. P., Levi S., Lobreaux S., Yewdall S. J. Structure, function, and evolution of ferritins. J Inorg Biochem. 1992 Aug 15;47(3-4):161–174. doi: 10.1016/0162-0134(92)84062-r. [DOI] [PubMed] [Google Scholar]
  2. Arosio P., Adelman T. G., Drysdale J. W. On ferritin heterogeneity. Further evidence for heteropolymers. J Biol Chem. 1978 Jun 25;253(12):4451–4458. [PubMed] [Google Scholar]
  3. Bauminger E. R., Harrison P. M., Hechel D., Hodson N. W., Nowik I., Treffry A., Yewdall S. J. Iron (II) oxidation and early intermediates of iron-core formation in recombinant human H-chain ferritin. Biochem J. 1993 Dec 15;296(Pt 3):709–719. doi: 10.1042/bj2960709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bauminger E. R., Harrison P. M., Hechel D., Nowik I., Treffry A. Mössbauer spectroscopic investigation of structure-function relations in ferritins. Biochim Biophys Acta. 1991 Dec 11;1118(1):48–58. doi: 10.1016/0167-4838(91)90440-b. [DOI] [PubMed] [Google Scholar]
  5. Bauminger E. R., Harrison P. M., Nowik I., Treffry A. Mössbauer spectroscopic study of the initial stages of iron-core formation in horse spleen apoferritin: evidence for both isolated Fe(III) atoms and oxo-bridged Fe(III) dimers as early intermediates. Biochemistry. 1989 Jun 27;28(13):5486–5493. doi: 10.1021/bi00439a025. [DOI] [PubMed] [Google Scholar]
  6. Bismuto E., Gratton E., Irace G. Effect of unfolding on the tryptophanyl fluorescence lifetime distribution in apomyoglobin. Biochemistry. 1988 Mar 22;27(6):2132–2136. doi: 10.1021/bi00406a047. [DOI] [PubMed] [Google Scholar]
  7. Desideri A., Stefanini S., Polizio F., Petruzzelli R., Chiancone E. Iron entry route in horse spleen apoferritin. Involvement of the three-fold channels as probed by selective reaction of cysteine-126 with the spin label 4-maleimido-tempo. FEBS Lett. 1991 Aug 5;287(1-2):10–14. doi: 10.1016/0014-5793(91)80004-m. [DOI] [PubMed] [Google Scholar]
  8. Gratton E., Limkeman M. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J. 1983 Dec;44(3):315–324. doi: 10.1016/S0006-3495(83)84305-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris D. C., Aisen P. Facilitation of Fe(II) autoxidation by Fe(3) complexing agents. Biochim Biophys Acta. 1973 Nov 2;329(1):156–158. doi: 10.1016/0304-4165(73)90019-6. [DOI] [PubMed] [Google Scholar]
  10. Hempstead P. D., Hudson A. J., Artymiuk P. J., Andrews S. C., Banfield M. J., Guest J. R., Harrison P. M. Direct observation of the iron binding sites in a ferritin. FEBS Lett. 1994 Aug 22;350(2-3):258–262. doi: 10.1016/0014-5793(94)00781-0. [DOI] [PubMed] [Google Scholar]
  11. Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M., Livingstone J. C., Treffry A., Luzzago A., Levi S., Arosio P., Cesareni G. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991 Feb 7;349(6309):541–544. doi: 10.1038/349541a0. [DOI] [PubMed] [Google Scholar]
  12. Lawson D. M., Treffry A., Artymiuk P. J., Harrison P. M., Yewdall S. J., Luzzago A., Cesareni G., Levi S., Arosio P. Identification of the ferroxidase centre in ferritin. FEBS Lett. 1989 Aug 28;254(1-2):207–210. doi: 10.1016/0014-5793(89)81040-3. [DOI] [PubMed] [Google Scholar]
  13. Levi S., Luzzago A., Cesareni G., Cozzi A., Franceschinelli F., Albertini A., Arosio P. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J Biol Chem. 1988 Dec 5;263(34):18086–18092. [PubMed] [Google Scholar]
  14. Levi S., Santambrogio P., Cozzi A., Rovida E., Corsi B., Tamborini E., Spada S., Albertini A., Arosio P. The role of the L-chain in ferritin iron incorporation. Studies of homo and heteropolymers. J Mol Biol. 1994 May 20;238(5):649–654. doi: 10.1006/jmbi.1994.1325. [DOI] [PubMed] [Google Scholar]
  15. Macara I. G., Hoy T. G., Harrison P. M. The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake. Biochem J. 1972 Jan;126(1):151–162. doi: 10.1042/bj1260151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mei G., Gilardi G., Venanzi M., Rosato N., Canters G. W., Agró A. F. Probing the structure and mobility of Pseudomonas aeruginosa azurin by circular dichroism and dynamic fluorescence anisotropy. Protein Sci. 1996 Nov;5(11):2248–2254. doi: 10.1002/pro.5560051111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rosato N., Finazzi-Agro A., Gratton E., Stefanini S., Chiancone E. Time-resolved fluorescence of apoferritin and its subunits. J Biol Chem. 1987 Oct 25;262(30):14487–14491. [PubMed] [Google Scholar]
  18. Rosato N., Gratton E., Mei G., Finazzi-Agrò A. Fluorescence lifetime distributions in human superoxide dismutase. Effect of temperature and denaturation. Biophys J. 1990 Oct;58(4):817–822. doi: 10.1016/S0006-3495(90)82427-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Santambrogio P., Levi S., Cozzi A., Corsi B., Arosio P. Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem J. 1996 Feb 15;314(Pt 1):139–144. doi: 10.1042/bj3140139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Santambrogio P., Levi S., Cozzi A., Rovida E., Albertini A., Arosio P. Production and characterization of recombinant heteropolymers of human ferritin H and L chains. J Biol Chem. 1993 Jun 15;268(17):12744–12748. [PubMed] [Google Scholar]
  21. Stefanini S., Chiancone E., Antonini E. Iron binding to apoferritin: a fluorescence spectroscopy study. FEBS Lett. 1976 Oct 15;69(1):90–94. doi: 10.1016/0014-5793(76)80660-6. [DOI] [PubMed] [Google Scholar]
  22. Stefanini S., Chiancone E., Arosio P., Finazzi-Agrò A., Antonini E. Structural heterogeneity and subunit composition of horse ferritins. Biochemistry. 1982 May 11;21(10):2293–2299. doi: 10.1021/bi00539a004. [DOI] [PubMed] [Google Scholar]
  23. Stefanini S., Desideri A., Vecchini P., Drakenberg T., Chiancone E. Identification of the iron entry channels in apoferritin. Chemical modification and spectroscopic studies. Biochemistry. 1989 Jan 10;28(1):378–382. doi: 10.1021/bi00427a052. [DOI] [PubMed] [Google Scholar]
  24. Treffry A., Bauminger E. R., Hechel D., Hodson N. W., Nowik I., Yewdall S. J., Harrison P. M. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis. Biochem J. 1993 Dec 15;296(Pt 3):721–728. doi: 10.1042/bj2960721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Treffry A., Zhao Z., Quail M. A., Guest J. R., Harrison P. M. Iron(II) oxidation by H chain ferritin: evidence from site-directed mutagenesis that a transient blue species is formed at the dinuclear iron center. Biochemistry. 1995 Nov 21;34(46):15204–15213. doi: 10.1021/bi00046a028. [DOI] [PubMed] [Google Scholar]
  26. Zolese G., Giambanco I., Curatola G., Staffolani R., Gratton E., Donato R. Time-resolved fluorescence of S-100a protein: effect of Ca2+, Mg2+ and unilamellar vesicles of egg phosphatidylcholine. Cell Calcium. 1996 Dec;20(6):465–474. doi: 10.1016/s0143-4160(96)90088-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES