Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Feb;7(2):243–253. doi: 10.1002/pro.5560070203

Hirunorms are true hirudin mimetics. The crystal structure of human alpha-thrombin-hirunorm V complex.

G De Simone 1, A Lombardi 1, S Galdiero 1, F Nastri 1, R Della Morte 1, N Staiano 1, C Pedone 1, M Bolognesi 1, V Pavone 1
PMCID: PMC2143932  PMID: 9521099

Abstract

A novel class of synthetic, multisite-directed thrombin inhibitors, known as hirunorms, has been described recently. These compounds were designed to mimic the binding mode of hirudin, and they have been proven to be very strong and selective thrombin inhibitors. Here we report the crystal structure of the complex formed by human alpha-thrombin and hirunorm V, a 26-residue polypeptide containing non-natural amino acids, determined at 2.1 A resolution and refined to an R-factor of 0.176. The structure reveals that the inhibitor binding mode is distinctive of a true hirudin mimetic, and it highlights the molecular basis of the high inhibitory potency (Ki is in the picomolar range) and the strong selectivity of hirunorm V. Hirunorm V interacts through the N-terminal tetrapeptide with the thrombin active site in a nonsubstrate mode; at the same time, this inhibitor specifically binds through the C-terminal segment to the fibrinogen recognition exosite. The backbone of the N-terminal tetrapeptide Chg1"-Val2"-2-Nal3"-Thr4" (Chg, cyclohexyl-glycine; 2-Nal, beta-(2-naphthyl)-alanine) forms a short beta-strand parallel to thrombin main-chain residues Ser214-Gly219. The Chg1" side chain fills the S2 subsite, Val2" is located at the entrance of S1, whereas 2-Nal3" side chain occupies the aryl-binding site. Such backbone orientation is very close to that observed for the N-terminal residues of hirudin, and it is similar to that of the synthetic retro-binding peptide BMS-183507, but it is opposite to the proposed binding mode of fibrinogen and of small synthetic substrates. Hirunorm V C-terminal segment binds to the fibrinogen recognition exosite, similarly to what observed for hirudin C-termninal tail and related compounds. The linker polypeptide segment connecting hirunorm V N-and C-terminal regions is not observable in the electron density maps. The crystallographic analysis proves the correctness of the design and it provides a compelling proof on the interaction mechanism for this novel class of high potency multisite-directed synthetic thrombin inhibitors.

Full Text

The Full Text of this article is available as a PDF (7.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascenzi P., Amiconi G., Bode W., Bolognesi M., Coletta M., Menegatti E. Proteinase inhibitors from the European medicinal leech Hirudo medicinalis: structural, functional and biomedical aspects. Mol Aspects Med. 1995;16(3):215–313. doi: 10.1016/0098-2997(95)00002-x. [DOI] [PubMed] [Google Scholar]
  2. Banner D. W., Hadváry P. Crystallographic analysis at 3.0-A resolution of the binding to human thrombin of four active site-directed inhibitors. J Biol Chem. 1991 Oct 25;266(30):20085–20093. [PubMed] [Google Scholar]
  3. Bar-Shavit R., Kahn A., Mudd M. S., Wilner G. D., Mann K. G., Fenton J. W., 2nd Localization of a chemotactic domain in human thrombin. Biochemistry. 1984 Jan 31;23(3):397–400. doi: 10.1021/bi00298a001. [DOI] [PubMed] [Google Scholar]
  4. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  5. Bode W., Mayr I., Baumann U., Huber R., Stone S. R., Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bode W., Turk D., Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1992 Apr;1(4):426–471. doi: 10.1002/pro.5560010402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brandstetter H., Turk D., Hoeffken H. W., Grosse D., Stürzebecher J., Martin P. D., Edwards B. F., Bode W. Refined 2.3 A X-ray crystal structure of bovine thrombin complexes formed with the benzamidine and arginine-based thrombin inhibitors NAPAP, 4-TAPAP and MQPA. A starting point for improving antithrombotics. J Mol Biol. 1992 Aug 20;226(4):1085–1099. doi: 10.1016/0022-2836(92)91054-s. [DOI] [PubMed] [Google Scholar]
  8. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
  9. DiMaio J., Gibbs B., Lefebvre J., Konishi Y., Munn D., Yue S. Y., Hornberger W. Synthesis of a homologous series of ketomethylene arginyl pseudodipeptides and application to low molecular weight hirudin-like thrombin inhibitors. J Med Chem. 1992 Sep 4;35(18):3331–3341. doi: 10.1021/jm00096a004. [DOI] [PubMed] [Google Scholar]
  10. DiMaio J., Ni F., Gibbs B., Konishi Y. A new class of potent thrombin inhibitors that incorporates a scissile pseudopeptide bond. FEBS Lett. 1991 Apr 22;282(1):47–52. doi: 10.1016/0014-5793(91)80441-5. [DOI] [PubMed] [Google Scholar]
  11. Engh R. A., Brandstetter H., Sucher G., Eichinger A., Baumann U., Bode W., Huber R., Poll T., Rudolph R., von der Saal W. Enzyme flexibility, solvent and 'weak' interactions characterize thrombin-ligand interactions: implications for drug design. Structure. 1996 Nov 15;4(11):1353–1362. doi: 10.1016/s0969-2126(96)00142-6. [DOI] [PubMed] [Google Scholar]
  12. Fenton J. W., 2nd, Bing D. H. Thrombin active-site regions. Semin Thromb Hemost. 1986 Jul;12(3):200–208. doi: 10.1055/s-2007-1003551. [DOI] [PubMed] [Google Scholar]
  13. Fenton J. W., 2nd, Ofosu F. A., Moon D. G., Maraganore J. M. Thrombin structure and function: why thrombin is the primary target for antithrombotics. Blood Coagul Fibrinolysis. 1991 Feb;2(1):69–75. [PubMed] [Google Scholar]
  14. Fenton J. W., 2nd, Olson T. A., Zabinski M. P., Wilner G. D. Anion-binding exosite of human alpha-thrombin and fibrin(ogen) recognition. Biochemistry. 1988 Sep 6;27(18):7106–7112. doi: 10.1021/bi00418a066. [DOI] [PubMed] [Google Scholar]
  15. Fenton J. W., 2nd Thrombin. Ann N Y Acad Sci. 1986;485:5–15. doi: 10.1111/j.1749-6632.1986.tb34563.x. [DOI] [PubMed] [Google Scholar]
  16. Féthière J., Tsuda Y., Coulombe R., Konishi Y., Cygler M. Crystal structure of two new bifunctional nonsubstrate type thrombin inhibitors complexed with human alpha-thrombin. Protein Sci. 1996 Jun;5(6):1174–1183. doi: 10.1002/pro.5560050620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grütter M. G., Priestle J. P., Rahuel J., Grossenbacher H., Bode W., Hofsteenge J., Stone S. R. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J. 1990 Aug;9(8):2361–2365. doi: 10.1002/j.1460-2075.1990.tb07410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iwanowicz E. J., Lau W. F., Lin J., Roberts D. G., Seiler S. M. Retro-binding tripeptide thrombin active-site inhibitors: discovery, synthesis, and molecular modeling. J Med Chem. 1994 Jul 8;37(14):2122–2124. doi: 10.1021/jm00040a001. [DOI] [PubMed] [Google Scholar]
  19. Jakubowski J. A., Maraganore J. M. Inhibition of coagulation and thrombin-induced platelet activities by a synthetic dodecapeptide modeled on the carboxy-terminus of hirudin. Blood. 1990 Jan 15;75(2):399–406. [PubMed] [Google Scholar]
  20. Kline T., Hammond C., Bourdon P., Maraganore J. M. Hirulog peptides with scissile bond replacements resistant to thrombin cleavage. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1049–1055. doi: 10.1016/0006-291x(91)90644-m. [DOI] [PubMed] [Google Scholar]
  21. Krishnan R., Tulinsky A., Vlasuk G. P., Pearson D., Vallar P., Bergum P., Brunck T. K., Ripka W. C. Synthesis, structure, and structure-activity relationships of divalent thrombin inhibitors containing an alpha-keto-amide transition-state mimetic. Protein Sci. 1996 Mar;5(3):422–433. doi: 10.1002/pro.5560050303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Krstenansky J. L., Broersma R. J., Owen T. J., Payne M. H., Yates M. T., Mao S. J. Development of MDL 28,050, a small stable antithrombin agent based on a functional domain of the leech protein, hirudin. Thromb Haemost. 1990 Apr 12;63(2):208–214. [PubMed] [Google Scholar]
  23. Krstenansky J. L., Mao S. J. Antithrombin properties of C-terminus of hirudin using synthetic unsulfated N alpha-acetyl-hirudin45-65. FEBS Lett. 1987 Jan 19;211(1):10–16. doi: 10.1016/0014-5793(87)81264-4. [DOI] [PubMed] [Google Scholar]
  24. Krstenansky J. L., Owen T. J., Yates M. T., Mao S. J. Anticoagulant peptides: nature of the interaction of the C-terminal region of hirudin with a noncatalytic binding site on thrombin. J Med Chem. 1987 Sep;30(9):1688–1691. doi: 10.1021/jm00392a030. [DOI] [PubMed] [Google Scholar]
  25. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  26. Lombardi A., Nastri F., Della Morte R., Rossi A., De Rosa A., Staiano N., Pedone C., Pavone V. Rational design of true hirudin mimetics: synthesis and characterization of multisite-directed alpha-thrombin inhibitors. J Med Chem. 1996 May 10;39(10):2008–2017. doi: 10.1021/jm950898g. [DOI] [PubMed] [Google Scholar]
  27. Malley M. F., Tabernero L., Chang C. Y., Ohringer S. L., Roberts D. G., Das J., Sack J. S. Crystallographic determination of the structures of human alpha-thrombin complexed with BMS-186282 and BMS-189090. Protein Sci. 1996 Feb;5(2):221–228. doi: 10.1002/pro.5560050205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Markwardt F. The development of hirudin as an antithrombotic drug. Thromb Res. 1994 Apr 1;74(1):1–23. doi: 10.1016/0049-3848(94)90032-9. [DOI] [PubMed] [Google Scholar]
  29. Maryanoff B. E., Qiu X., Padmanabhan K. P., Tulinsky A., Almond H. R., Jr, Andrade-Gordon P., Greco M. N., Kauffman J. A., Nicolaou K. C., Liu A. Molecular basis for the inhibition of human alpha-thrombin by the macrocyclic peptide cyclotheonamide A. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8048–8052. doi: 10.1073/pnas.90.17.8048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mathews I. I., Padmanabhan K. P., Ganesh V., Tulinsky A., Ishii M., Chen J., Turck C. W., Coughlin S. R., Fenton J. W., 2nd Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry. 1994 Mar 22;33(11):3266–3279. doi: 10.1021/bi00177a018. [DOI] [PubMed] [Google Scholar]
  31. Nakanishi H., Chrusciel R. A., Shen R., Bertenshaw S., Johnson M. E., Rydel T. J., Tulinsky A., Kahn M. Peptide mimetics of the thrombin-bound structure of fibrinopeptide A. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1705–1709. doi: 10.1073/pnas.89.5.1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nardini M., Pesce A., Rizzi M., Casale E., Ferraccioli R., Balliano G., Milla P., Ascenzi P., Bolognesi M. Human alpha-thrombin inhibition by the active site titrant N alpha-(N,N-dimethylcarbamoyl)-alpha-azalysine p-nitrophenyl ester: a comparative kinetic and X-ray crystallographic study. J Mol Biol. 1996 May 24;258(5):851–859. doi: 10.1006/jmbi.1996.0292. [DOI] [PubMed] [Google Scholar]
  33. Okamoto S., Hijikata A., Kikumoto R., Tonomura S., Hara H., Ninomiya K., Maruyama A., Sugano M., Tamao Y. Potent inhibition of thrombin by the newly synthesized arginine derivative No. 805. The importance of stereo-structure of its hydrophobic carboxamide portion. Biochem Biophys Res Commun. 1981 Jul 30;101(2):440–446. doi: 10.1016/0006-291x(81)91279-1. [DOI] [PubMed] [Google Scholar]
  34. Priestle J. P., Rahuel J., Rink H., Tones M., Grütter M. G. Changes in interactions in complexes of hirudin derivatives and human alpha-thrombin due to different crystal forms. Protein Sci. 1993 Oct;2(10):1630–1642. doi: 10.1002/pro.5560021009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Qiu X., Padmanabhan K. P., Carperos V. E., Tulinsky A., Kline T., Maraganore J. M., Fenton J. W., 2nd Structure of the hirulog 3-thrombin complex and nature of the S' subsites of substrates and inhibitors. Biochemistry. 1992 Dec 1;31(47):11689–11697. doi: 10.1021/bi00162a004. [DOI] [PubMed] [Google Scholar]
  36. Qiu X., Yin M., Padmanabhan K. P., Krstenansky J. L., Tulinsky A. Structures of thrombin complexes with a designed and a natural exosite peptide inhibitor. J Biol Chem. 1993 Sep 25;268(27):20318–20326. [PubMed] [Google Scholar]
  37. Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
  38. Rydel T. J., Tulinsky A., Bode W., Huber R. Refined structure of the hirudin-thrombin complex. J Mol Biol. 1991 Sep 20;221(2):583–601. doi: 10.1016/0022-2836(91)80074-5. [DOI] [PubMed] [Google Scholar]
  39. Skrzypczak-Jankun E., Carperos V. E., Ravichandran K. G., Tulinsky A., Westbrook M., Maraganore J. M. Structure of the hirugen and hirulog 1 complexes of alpha-thrombin. J Mol Biol. 1991 Oct 20;221(4):1379–1393. [PubMed] [Google Scholar]
  40. Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
  41. Stubbs M. T., Bode W. A player of many parts: the spotlight falls on thrombin's structure. Thromb Res. 1993 Jan 1;69(1):1–58. doi: 10.1016/0049-3848(93)90002-6. [DOI] [PubMed] [Google Scholar]
  42. Stubbs M. T., Oschkinat H., Mayr I., Huber R., Angliker H., Stone S. R., Bode W. The interaction of thrombin with fibrinogen. A structural basis for its specificity. Eur J Biochem. 1992 May 15;206(1):187–195. doi: 10.1111/j.1432-1033.1992.tb16916.x. [DOI] [PubMed] [Google Scholar]
  43. Stürzebecher J., Markwardt F., Voigt B., Wagner G., Walsmann P. Cyclic amides of N alpha-arylsulfonylaminoacylated 4-amidinophenylalanine--tight binding inhibitors of thrombin. Thromb Res. 1983 Mar 15;29(6):635–642. doi: 10.1016/0049-3848(83)90218-9. [DOI] [PubMed] [Google Scholar]
  44. Stürzebecher J., Walsmann P., Voigt B., Wagner G. Inhibition of bovine and human thrombins by derivatives of benzamidine. Thromb Res. 1984 Dec 1;36(5):457–465. doi: 10.1016/0049-3848(84)90302-5. [DOI] [PubMed] [Google Scholar]
  45. Szewczuk Z., Gibbs B. F., Yue S. Y., Purisima E., Zdanov A., Cygler M., Konishi Y. Design of a linker for trivalent thrombin inhibitors: interaction of the main chain of the linker with thrombin. Biochemistry. 1993 Apr 6;32(13):3396–3404. doi: 10.1021/bi00064a025. [DOI] [PubMed] [Google Scholar]
  46. Tabernero L., Chang C. Y., Ohringer S. L., Lau W. F., Iwanowicz E. J., Han W. C., Wang T. C., Seiler S. M., Roberts D. G., Sack J. S. Structure of a retro-binding peptide inhibitor complexed with human alpha-thrombin. J Mol Biol. 1995 Feb 10;246(1):14–20. doi: 10.1006/jmbi.1994.0060. [DOI] [PubMed] [Google Scholar]
  47. Tollefsen D. M., Feagler J. R., Majerus P. W. The binding of thrombin to the surface of human platelets. J Biol Chem. 1974 Apr 25;249(8):2646–2651. [PubMed] [Google Scholar]
  48. Tsuda Y., Cygler M., Gibbs B. F., Pedyczak A., Féthière J., Yue S. Y., Konishi Y. Design of potent bivalent thrombin inhibitors based on hirudin sequence: incorporation of nonsubstrate-type active site inhibitors. Biochemistry. 1994 Dec 6;33(48):14443–14451. doi: 10.1021/bi00252a010. [DOI] [PubMed] [Google Scholar]
  49. Vijayalakshmi J., Padmanabhan K. P., Mann K. G., Tulinsky A. The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin. Protein Sci. 1994 Dec;3(12):2254–2271. doi: 10.1002/pro.5560031211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Vitali J., Martin P. D., Malkowski M. G., Robertson W. D., Lazar J. B., Winant R. C., Johnson P. H., Edwards B. F. The structure of a complex of bovine alpha-thrombin and recombinant hirudin at 2.8-A resolution. J Biol Chem. 1992 Sep 5;267(25):17670–17678. [PubMed] [Google Scholar]
  51. Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
  52. Wu T. P., Yee V., Tulinsky A., Chrusciel R. A., Nakanishi H., Shen R., Priebe C., Kahn M. The structure of a designed peptidomimetic inhibitor complex of alpha-thrombin. Protein Eng. 1993 Jul;6(5):471–478. doi: 10.1093/protein/6.5.471. [DOI] [PubMed] [Google Scholar]
  53. Zdanov A., Wu S., DiMaio J., Konishi Y., Li Y., Wu X., Edwards B. F., Martin P. D., Cygler M. Crystal structure of the complex of human alpha-thrombin and nonhydrolyzable bifunctional inhibitors, hirutonin-2 and hirutonin-6. Proteins. 1993 Nov;17(3):252–265. doi: 10.1002/prot.340170304. [DOI] [PubMed] [Google Scholar]
  54. van de Locht A., Lamba D., Bauer M., Huber R., Friedrich T., Kröger B., Höffken W., Bode W. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J. 1995 Nov 1;14(21):5149–5157. doi: 10.1002/j.1460-2075.1995.tb00199.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. van de Locht A., Stubbs M. T., Bode W., Friedrich T., Bollschweiler C., Höffken W., Huber R. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 1996 Nov 15;15(22):6011–6017. [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES