Abstract
Active-site His 287 of Rhodospirillum rubrum ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase interacts with the C3-hydroxyl of bound substrate or reaction-intermediate analogue (CABP), water molecules, and ligands for the activator metal-ion (Andersson I, 1996, J Mol Biol 259:160-174; Taylor TC, Andersson I, 1997, J Mol Biol 265:432-444). To test structure-based postulates of catalytic functionality, His 287 was replaced with Asn or Gln. The mutants are not affected adversely in subunit assembly, activation (binding of Mg2+ and carbamylation of Lys 191), or recognition of phosphorylated ligands; they bind CABP with even greater tenacity than does wild-type enzyme. H287N and H287Q are severely impaired in catalyzing overall carboxylation (approximately 10(3)-fold and > 10(5)-fold, respectively) and enolization (each mutant below threshold for detection) of RuBP. H287N preferentially catalyzes decarboxylation of carboxylated reaction intermediate instead of forward processing to phosphoglycerate. Analysis of RuBP turnover that occurs at high concentrations of mutants over extended time periods reveal > 10-fold reduced CO2/O2 specificities, elevated misprotonation of the enediol intermediate, and misprocessing of the oxygenated intermediate of the oxygenase pathway. These results are consistent with multifaceted roles for His 287 in promoting enediol formation, enediol tautomerization, and forward-processing of carboxylated intermediate.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson I. Large structures at high resolution: the 1.6 A crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate. J Mol Biol. 1996 May 31;259(1):160–174. doi: 10.1006/jmbi.1996.0310. [DOI] [PubMed] [Google Scholar]
- Cleland W. W. Kinetic competence of enzymic intermediates: fact or fiction? Biochemistry. 1990 Apr 3;29(13):3194–3197. doi: 10.1021/bi00465a006. [DOI] [PubMed] [Google Scholar]
- Harpel M. R., Hartman F. C. Chemical rescue by exogenous amines of a site-directed mutant of ribulose 1,5-bisphosphate carboxylase/oxygenase that lacks a key lysyl residue. Biochemistry. 1994 May 10;33(18):5553–5561. doi: 10.1021/bi00184a026. [DOI] [PubMed] [Google Scholar]
- Harpel M. R., Hartman F. C. Facilitation of the terminal proton transfer reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase by active-site Lys166. Biochemistry. 1996 Nov 5;35(44):13865–13870. doi: 10.1021/bi962184t. [DOI] [PubMed] [Google Scholar]
- Harpel M. R., Larimer F. W., Hartman F. C. Functional analysis of the putative catalytic bases His-321 and Ser-368 of Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase by site-directed mutagenesis. J Biol Chem. 1991 Dec 25;266(36):24734–24740. [PubMed] [Google Scholar]
- Harpel M. R., Lee E. H., Hartman F. C. Anion-exchange analysis of ribulose-bisphosphate carboxylase/oxygenase reactions: CO2/O2 specificity determination and identification of side products. Anal Biochem. 1993 Mar;209(2):367–374. doi: 10.1006/abio.1993.1136. [DOI] [PubMed] [Google Scholar]
- Harpel M. R., Serpersu E. H., Lamerdin J. A., Huang Z. H., Gage D. A., Hartman F. C. Oxygenation mechanism of ribulose-bisphosphate carboxylase/oxygenase. Structure and origin of 2-carboxytetritol 1,4-bisphosphate, a novel O2-dependent side product generated by a site-directed mutant. Biochemistry. 1995 Sep 5;34(35):11296–11306. doi: 10.1021/bi00035a039. [DOI] [PubMed] [Google Scholar]
- Hartman F. C., Harpel M. R. Chemical and genetic probes of the active site of D-ribulose-1,5-bisphosphate carboxylase/oxygenase: a retrospective based on the three-dimensional structure. Adv Enzymol Relat Areas Mol Biol. 1993;67:1–75. doi: 10.1002/9780470123133.ch1. [DOI] [PubMed] [Google Scholar]
- Hartman F. C., Harpel M. R. Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu Rev Biochem. 1994;63:197–234. doi: 10.1146/annurev.bi.63.070194.001213. [DOI] [PubMed] [Google Scholar]
- Hartman F. C., Lee E. H. Examination of the function of active site lysine 329 of ribulose-bisphosphate carboxylase/oxygenase as revealed by the proton exchange reaction. J Biol Chem. 1989 Jul 15;264(20):11784–11789. [PubMed] [Google Scholar]
- Jaworowski A., Hartman F. C., Rose I. A. Intermediates in the ribulose-1,5-bisphosphate carboxylase reaction. J Biol Chem. 1984 Jun 10;259(11):6783–6789. [PubMed] [Google Scholar]
- Knight S., Andersson I., Brändén C. I. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site. J Mol Biol. 1990 Sep 5;215(1):113–160. doi: 10.1016/S0022-2836(05)80100-7. [DOI] [PubMed] [Google Scholar]
- Kuehn G. D., Hsu T. C. Preparative-scale enzymic synthesis of D-[14C]ribulose 1,5-bisphosphate. Biochem J. 1978 Dec 1;175(3):909–912. doi: 10.1042/bj1750909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laing W. A. Regulation of Soybean Net Photosynthetic CO(2) Fixation by the Interaction of CO(2), O(2), and Ribulose 1,5-Diphosphate Carboxylase. Plant Physiol. 1974 Nov;54(5):678–685. doi: 10.1104/pp.54.5.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larimer F. W., Harpel M. R., Hartman F. C. Beta-elimination of phosphate from reaction intermediates by site-directed mutants of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem. 1994 Apr 15;269(15):11114–11120. [PubMed] [Google Scholar]
- Larimer F. W., Mural R. J., Soper T. S. Versatile protein engineering vectors for mutagenesis, expression and hybrid enzyme formation. Protein Eng. 1990 Jan;3(3):227–231. doi: 10.1093/protein/3.3.227. [DOI] [PubMed] [Google Scholar]
- Larson E. M., Larimer F. W., Hartman F. C. Mechanistic insights provided by deletion of a flexible loop at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry. 1995 Apr 11;34(14):4531–4537. doi: 10.1021/bi00014a005. [DOI] [PubMed] [Google Scholar]
- Lee E. H., Harpel M. R., Chen Y. R., Hartman F. C. Perturbation of reaction-intermediate partitioning by a site-directed mutant of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem. 1993 Dec 15;268(35):26583–26591. [PubMed] [Google Scholar]
- Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
- Lorimer G. H., Chen Y. R., Hartman F. C. A role for the epsilon-amino group of lysine-334 of ribulose-1,5-bisphosphate carboxylase in the addition of carbon dioxide to the 2,3-enediol(ate) of ribulose 1,5-bisphosphate. Biochemistry. 1993 Sep 7;32(35):9018–9024. doi: 10.1021/bi00086a006. [DOI] [PubMed] [Google Scholar]
- Lorimer G. H., Miziorko H. M. Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and Mg2+. Biochemistry. 1980 Nov 11;19(23):5321–5328. doi: 10.1021/bi00564a027. [DOI] [PubMed] [Google Scholar]
- Lorimer G. H. Ribulosebisphosphate carboxylase: amino acid sequence of a peptide bearing the activator carbon dioxide. Biochemistry. 1981 Mar 3;20(5):1236–1240. doi: 10.1021/bi00508a028. [DOI] [PubMed] [Google Scholar]
- Lu G. G., Lindqvist Y., Schneider G. Electrostatic fields at the active site of ribulose-1,5-bisphosphate carboxylase. Proteins. 1992 Feb;12(2):117–127. doi: 10.1002/prot.340120205. [DOI] [PubMed] [Google Scholar]
- Lundqvist T., Schneider G. Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate. J Biol Chem. 1991 Jul 5;266(19):12604–12611. [PubMed] [Google Scholar]
- Morell M. K., Paul K., O'Shea N. J., Kane H. J., Andrews T. J. Mutations of an active site threonyl residue promote beta elimination and other side reactions of the enediol intermediate of the ribulosebisphosphate carboxylase reaction. J Biol Chem. 1994 Mar 18;269(11):8091–8098. [PubMed] [Google Scholar]
- Newman J., Gutteridge S. The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2.2-A resolution. J Biol Chem. 1993 Dec 5;268(34):25876–25886. [PubMed] [Google Scholar]
- Niyogi S. K., Foote R. S., Mural R. J., Larimer F. W., Mitra S., Soper T. S., Machanoff R., Hartman F. C. Nonessentiality of histidine 291 of Rhodospirillum rubrum ribulose-bisphosphate carboxylase/oxygenase as determined by site-directed mutagenesis. J Biol Chem. 1986 Aug 5;261(22):10087–10092. [PubMed] [Google Scholar]
- Pierce J., Andrews T. J., Lorimer G. H. Reaction intermediate partitioning by ribulose-bisphosphate carboxylases with differing substrate specificities. J Biol Chem. 1986 Aug 5;261(22):10248–10256. [PubMed] [Google Scholar]
- Pierce J., Tolbert N. E., Barker R. Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry. 1980 Mar 4;19(5):934–942. doi: 10.1021/bi00546a018. [DOI] [PubMed] [Google Scholar]
- Rose I. A. Chemistry of proton abstraction by glycolytic enzymes (aldolase, isomerases and pyruvate kinase). Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):131–143. doi: 10.1098/rstb.1981.0067. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schloss J. V., Phares E. F., Long M. V., Norton I. L., Stringer C. D., Hartman F. C. Ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Methods Enzymol. 1982;90(Pt E):522–528. doi: 10.1016/s0076-6879(82)90179-3. [DOI] [PubMed] [Google Scholar]
- Schreuder H. A., Knight S., Curmi P. M., Andersson I., Cascio D., Sweet R. M., Brändén C. I., Eisenberg D. Crystal structure of activated tobacco rubisco complexed with the reaction-intermediate analogue 2-carboxy-arabinitol 1,5-bisphosphate. Protein Sci. 1993 Jul;2(7):1136–1146. doi: 10.1002/pro.5560020708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith H. B., Larimer F. W., Hartman F. C. Subtle alteration of the active site of ribulose bisphosphate carboxylase/oxygenase by concerted site-directed mutagenesis and chemical modification. Biochem Biophys Res Commun. 1988 Apr 29;152(2):579–584. doi: 10.1016/s0006-291x(88)80077-9. [DOI] [PubMed] [Google Scholar]
- Sue J. M., Knowles J. R. Ribulose-1,5-bisphosphate carboxylase: fate of the tritium label in [3]3H]ribulose 1,5-bisphosphate during the enzyme-catalyzed reaction. Biochemistry. 1982 Oct 26;21(22):5404–5410. doi: 10.1021/bi00265a004. [DOI] [PubMed] [Google Scholar]
- Taylor T. C., Andersson I. Structure of a product complex of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochemistry. 1997 Apr 1;36(13):4041–4046. doi: 10.1021/bi962818w. [DOI] [PubMed] [Google Scholar]
- Taylor T. C., Andersson I. The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate. J Mol Biol. 1997 Jan 31;265(4):432–444. doi: 10.1006/jmbi.1996.0738. [DOI] [PubMed] [Google Scholar]